Automated Server Testing: an Industrial Experience
Report

Chao Peng, Yujun Gao, Ping Yang
ByteDance
Beijing, China
{pengchao.x, gaoyujun, yangping.cser} @bytedance.com

Abstract—A server API bug could have a huge impact on
the operation of other servers and clients relying on that API,
resulting in service downtime and financial losses. A common
practice of server API testing inside enterprises is writing
test inputs and assertions manually, and the test effectiveness
depends largely on testers’ carefulness, expertise and domain
knowledge. Writing test cases for complicated business scenarios
with multiple and ordered API calls is also a heavy task that
requires a lot of human effort. In this paper, we present the
design and deployment of SIT, a fully automated server interface
reliability testing platform at ByteDance that provides capabilities
including (1) traffic data generation based on combinatorial
testing and fuzzing, (2) scenario testing for complicated business
logics and (3) automated test execution with fault localisation
in a controlled environment that does not affect online services.
SIT has been integrated into the source control system and is
triggered when new code change is submitted or configured as
scheduled tasks. During the year of 2021, SIT blocked 434 valid
issues before they were introduced into the production system.

Index Terms—server testing, traffic record and replay, auto-
mated testing

I. INTRODUCTION

Server-side APIs are publicly exposed endpoints that accept
requests from clients or other servers and return responses,
usually in the format of JSON or XML. Modern server
APIs usually adhere to the REpresentational State Transfer
(REST) [1] or Remote Procedure Call (RPC) [2] architecture
styles.

As server APIs serve as the protocol that allows servers and
clients to communicate and share resources, they are playing
a key role in heterogeneous software system integration [3].
Therefore, server testing is a critical task in modern software
quality assurance: a server fault could cause an internal impact
on other services and an external impact that influences user
experience, resulting in financial and user losses.

In recent years, testing techniques have been widely studied
for client-side applications (web and mobile apps) [4]-[11] and
web services based on SOAP (Simple Object Access Protocol)
and WSDL (Web Services Description Language) [12], [13].
However, few of the existing work focused on testing RESTful
and RPC APIs [3].

Previously, the quality assurance (QA) for server APIs at
ByteDance was mostly based on artificially crafted test cases
and automated test case execution (as shown in Figure 1),
which has the following limitations:

Writing Test
Cases

Writing
Assertions

It Il

{ Regression

]—{ Test Execution ]—{
- Fault
} Bug Fixing } Localisation J

Fig. 1. Workflow of manual server testing

Result J

Data
Preparation Notification

Testing

a) High test case writing and maintenance cost: A
common practice of manual testing for server interfaces is
to manually write test cases according to the interface speci-
fication. However, for a business scenario that is composed
of multiple interfaces, it is time-consuming for testers to
understand the description and business logic of the scenario,
gather all interfaces related to the scenario and write test
cases based on different combinations and orders of related
interfaces. RPC interface testing, in particular, requires test
cases to comply with preconditions such as importing IDLs
(interactive data language) of the interface under test. When
the interface changes, affected test cases need to be corrected
manually. In addition, screening, filtering and upgrading test
cases in regression testing mostly rely on the experience of
testers or fixed rules to decide which test cases should be
selected, removed or rewritten. Such practises are usually time-
consuming.

b) Low test effectiveness: For reasons including rapid
development and release of new products, there may not be
sufficient interface tests. In addition, manual testing usually
focuses on most important functionalities, resulting in low
overall code coverage and ineffective quality assurance.

c) High effort required for test assertion: Test oracle
checking is usually implemented by assertions using JSON
Schema, which is coarse in granularity. Moreover, writing
customised assertions is also costly and inflexible. When
specifications of server interfaces change, the test oracle also
needs to be updated manually.

Given these limitations, we propose SIT (Server Interface
Testing), for scalable and effective server API testing. The goal
of SIT is to help developers to uncover and fix bugs before
they are introduced into the production system. We report
on the deployment of SIT on the source control management
system of ByteDance to support testing server APIs at a large



/

Data Centre

Compliance Rules

(Legal and Privacy) Customised Rules

Test Accounts

— —

Traffic Record and
Processing

'SIT

Test Cases
Manual Trigger

Timely Tasks Test Generation

ClI Trigger

Traffic Data
Expected
Response

Code
Coverage

Test Execution

Real
Response

Assertion Check

Result Notification

Fig. 2. Architecture and workflow of SIT

scale: 5 business lines (products)' with millions of lines of
code, serving billions of end users over the year of 2021.
Specifically, SIT uncovered 550 unique bugs. 78.9% of them
were marked as valid issues and resolved by developers.

II. OUR APPROACH

We present SIT, an automated server reliability testing
framework that provides, a) automated traffic data® generation
for single API and business scenarios with multiple APIs
and b) test execution in a controlled sandbox and 3. fault
localisation.

The overall architecture and workflow of SIT is presented
in Figure 2. SIT can be triggered in three ways: a) manual
triggering via a webpage frontend, b) scheduled tasks set up
by developers and testers, and c¢) CI (continuous integration)
when new code change is submitted or new server version is
due to be deployed. The inputs to SIT include:

1) Anonymised and configured traffic data complying with
legal and privacy rules are used as the input data pool,
as described in Section II-A.

2) Customised rules can be defined by developers and
testers to generate desired test inputs for specific fields,
as described in Section II-B.

3) Test accounts are used to setup special test environment
that require user logging in.

As for reliability testing, the test oracle (assertion) of SIT is
that the API under test should not crash, no runtime exceptions
or error log info are thrown during test execution and no failure
return code is caught after execution.

In the rest of this section, we discuss details of the design
and implementation of SIT’s working phases.

'For confidential reasons, we are regretful that we cannot provide names
of these products.

2Traffic data is used interchangeably with test inputs in the context of server
testing in this paper.

A. Compliant and Anonymised Data Collection

SIT collects anonymised RESTful (via HTTP) and RPC
traffic data from the TPC (Transmission Control Protocol)
layer, including request/response headers and bodies. The
data anonymisation process is performed by security and
privacy departments under legal and privacy rules and the data
accessible to SIT is always anonymised data.

After removing duplicated data, SIT stores APIs in the same
order of the online traffic and corresponding anonymised or
customised data as the input data pool. This makes sure that
the generated data is more in line with actual user scenario,
with higher diversity to balance test coverage and maintenance
cost.

B. Support for Data Customisation

The anonymisation process replaces original data from
sensitive fields by asterisk signs (*). When special values are
needed to test specific business logic, SIT supports input data
customisation: testers can select a set of data fields of interest
and define input generation rules such as regular expressions
for SIT to generate fake but meaningful data for these fields,
or provided a list of candidate values for these fields.

C. Test Generation

Instead of direct traffic replay, SIT uses pair-wise combina-
torial testing to generate new test cases from the stored traffic
data. The rationale behind choosing pair-wise combination is
that most failures are triggered by combinations of a few
values and covering pairs could reveal more faults but keeping
the number of test cases smaller than all combinations [14].

SIT samples the API traffic and collects all possible unique
values for each field of the API and then generates pairs of
the these values covering all combinations of values from any
two fields. To generate test inputs for the API, SIT keeps
picking values from different combinations until all pairs are
exhausted.



For newly developed and changed APIs without applicable
existing input candidates, we use fuzz testing to generate
random test inputs based on the interface specification. In
this case, SIT is still able to catch crashing bugs and runtime
exceptions such as time-out and server-no-response exceptions
during test execution.

D. Test Execution and Fault Localisation

Testing tasks can be triggered by developers manually,
scheduled tasks, or CI changes. For manual tasks, the devel-
oper can specify the list of APIs and test configurations in-
cluding customised data generation rules. Similarly, scheduled
tasks are also configured with an API list and customisations
with desired time interval. CI changes-triggered tasks only
focus on APIs that have code or dependency changes by
the merge requests or new service releasing tasks. All tasks
are performed using test accounts in a controlled sandbox
environment where services are compiled with source code
instrumentation for line coverage measurement.

When a failure is detected during or after test execution, the
original code change (merge request) or attempt to publish the
service is blocked by SIT. In addition to this, fault localisation
is also performed by SIT to help developers save debugging
time. SIT extracts stack traces from test execution logs to
pin-point to the code line that introduces the runtime failure,
which is probably the cause of the bug. The original error
information, call stack and collected code line are sent back
to the developer for reference.

E. Scenario Testing

In the industrial context, single API testing is not suitable
for business scenarios that requires testing multiple APIs
in order with back-and-forth dependencies. Taking online
livestreaming as an example: scenario-related APIs account for
a high proportion of all interfaces, such as APIs for different
types of live rooms, interactions between the host and the
audience, interactive games, sending gifts, etc.

SIT proposes a scenario-based test case construction scheme
based on a call link directed acyclic graph (DAG) diagram:

1) Collects the call chain of APIs from the TPC layer.

2) Extracts meta data information including user ID, start
time and end time.

3) Calculates largest common request sequences from dif-
ferent flows using the LCS-Length-Table-Formulation
algorithm.

4) Infers scenario-based interface parameter relationship
and constructs the DAG diagram based on the request
source, query body and other parameters, through sort-
ing and building linked relationships.

Figure 3 shows a simplified example of the API call chain
for livestreaming. The user needs to create live room and start
livestreaming. During the livestreaming, the user can query the
list of available live rooms and call another host to livestream
together (one host will also appear in another’s live room).

SIT first identifies the three APIs and their order to start
livestreaming and a pair of these three APIs serve as the

Create Room

Initiate Room Initiate Room
Start Live Start Live
Get Available
Live Rooms

Invite Live Call
Accept Live Call

End Live Call
End Live Call

Other operations

Fig. 3. Example livestreaming scenario

prerequisite for live calls. In addition, the order and param-
eter relationship of caller.call(callee) to make live call and
callee.accept(caller) to accept live calls is also recorded by
SIT. When constructing test cases for this scenario, SIT will
choose two test accounts and maintain the caller and callee
relationship for corresponding APIs. A possible test cases
generated by SIT is illustrated in Figure 4.

&-&--@-

Fig. 4. A possible test case for livestreaming

III. APPLICATION IN PRACTICE

We report the industrial deployment of SIT on 5 business
lines (products) during the year of 2021. During this period,
SIT performed averagely 0.2 billion reliability testing tasks
per week and 92.2% of these tasks were successfully finished.
Causes to failed tasks include wrong parameter types and
denied access to test accounts. We summarise some repre-
sentational server bug types that were detected by SIT:

o Faulty route configuration. The route configuration
updated is no longer compatible to devices running clients
with older versions, resulting in wrong server response.

o Missing function parameter. Not enough parameters are
used when making a function call. If the client is an old
version, it would also send requests with less parameters.

o Parameter type mismatch. The type of the parameter
in the requested API is changed in the server side but
different from the client.



IV. RELATED WORK

In this section, we discuss existing work on test input
generation, split into client testing and server API testing.

Automated client testing is a well-studied area [15]. Ex-
isting work focuses on GUI (Graphical User Interface) state
abstraction [16] and automated GUI event generation based on
model-based testing [6], [7] and machine learning [17]-[19].
At ByteDance, there are several automated testing tools for
mobile apps via GUI input generation, including Fastbot [5]
for app reliability testing and CAT [9] that focuses on GUI
elements impacted by code changes. These tools are effec-
tive in uncovering app crashes and ANR (Application Not
Responding) problems in an industrial context. Unlike these
client testing tools, SIT focuses on testing server applications
based on traffic data generation and automated test assertions.

To test server APIs, several tools are widely used to write
API requests manually and catch responses for testers to
validate, including Postman [20], Apifox [21], etc. Automated
API testing has received less attention than Service-Oriented
Architectures (SOA) testing techniques [12], [13], although
RESTful APIs are modern alternatives to SOAs [3]. Several
tools and frameworks are proposed to test server APIs but
require formal notations or manually defined models of API
under test [22]-[24]. These techniques are hard to be adopted
by the industry as testers have to invest time into getting
familiar with them and update formal notations and models
when changes are made to services and APIs. In terms of
automated traffic generation, FAUSTA [25] is the closest to
our work which also generates traffic data to test large-scale
industrial server applications. FAUSTA synthesizes initial ran-
dom test inputs based on service specification and predicts
new inputs using Markov chain. However, to test services with
dependencies, such as answering a call should be preceded
by receiving a call, FAUSTA requires developers to define
guided flows (orders required to call services), which hinders
automation.

V. CONCLUSION AND FUTURE WORK

This paper presents a framework named SIT for server
API reliability testing at scale with traffic generation, scenario
testing, test execution in a sandbox and fault localisation
capabilities. The deployment of SIT at ByteDance helped de-
velopers to uncover and fix 434 unique issues before they were
introduced into production systems during the year of 2021.
In the future, we plan to guide test generation based on the
coverage achieved to further improve test coverage and fault
finding capabilities. We are also interested in combing SIT
with existing static analysis tools to balance the completeness
and time cost of both techniques.

REFERENCES

[11 R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[2] R. Srinivasan, “RPC: Remote procedure call protocol specification
version 2,” 1995.

[3] A. Martin-Lopez, “Al-driven web API testing,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, 2020, pp. 202-205.

[4]

[5

=

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

F. Y. B. Daragh and S. Malek, “Deep GUI: Black-box GUI input
generation with deep learning,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2021,
pp. 905-916.

T. Cai, Z. Zhang, and P. Yang, “Fastbot: A multi-agent model-based test
generation system,” in Proceedings of the IEEE/ACM 1Ist International
Conference on Automation of Software Test, 2020, pp. 93-96.

T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su,
“Practical GUI testing of Android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 1EEE, 2019, pp. 269-280.

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245-256.

J. Sun, “SetDroid: detecting user-configurable setting issues of Android
apps via metamorphic fuzzing,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). 1EEE, 2021, pp. 108-110.

C. Peng, A. Rajan, and T. Cai, “CAT: Change-focused Android GUI test-
ing,” in 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 1IEEE, 2021, pp. 460-470.

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, 2016, pp. 94-105.
N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with Sapienz
at Facebook,” in International Symposium on Search Based Software
Engineering. Springer, 2018, pp. 3-45.

M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification in
service-oriented architecture: a survey,” Software Testing, Verification
and Reliability, vol. 23, no. 4, pp. 261-313, 2013.

G. Canfora and M. D. Penta, “Service-oriented architectures testing: A
survey,” in Software Engineering. Springer, 2007, pp. 78-105.

M. Pezze and M. Young, Software testing and analysis: process,
principles, and techniques. John Wiley & Sons, 2008.

P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of Android apps: A systematic literature review,” IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45-66, 2018.

Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI
testing using multi-level GUI comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 238-249.

Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box Android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). 1EEE, 2019, pp. 1070-1073.

T. A. T. Vuong and S. Takada, “Semantic analysis for deep g-network
in Android GUI testing.” in SEKE, 2019, pp. 123-170.

J. Eskonen, J. Kahles, and J. Reijonen, “Automating GUI testing with
image-based deep reinforcement learning,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS). IEEE, 2020, pp. 160-167.

Postman. (2022). [Online]. Available: https://www.postman.com
Apifox. (2022). [Online]. Available: https://www.apifox.cn

S. K. Chakrabarti and R. Rodriquez, “Connectedness testing of RESTFul
web-services,” in Proceedings of the 3rd India software engineering
conference, 2010, pp. 143-152.

C. Benac Earle, L.-A. Fredlund, A. Herranz, and J. Marifio, “Jsongen: a
quickcheck based library for testing JSON web services,” in Proceedings
of the Thirteenth ACM SIGPLAN workshop on Erlang, 2014, pp. 33-41.
P. Lamela Seijas, H. Li, and S. Thompson, “Towards property-based
testing of RESTFul web services,” in Proceedings of the twelfth ACM
SIGPLAN workshop on Erlang, 2013, pp. 77-78.

K. Mao, T. Kapus, L. Petrou, A. Hajdu, M. Marescotti, A. Loscher,
M. Harman, and D. Distefano, “Fausta: Scaling dynamic analysis with
traffic generation at WhatsApp,” in 2022 15th IEEE Conference on
Software Testing, Verification and Validation (ICST). 1EEE, 2022.



