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Abstract—Large Language Models (LLMs) have become in-
creasingly integral to enhancing developer productivity, par-
ticularly in code generation, comprehension, and repair tasks.
However, fine-tuning these models with high-quality, real-world
data is challenging due to privacy concerns and the lack of
accessible, labeled datasets. In this paper, we present DialogA-
gent, an automated tool for generating synthetic training data
that closely mimics real developer interactions within Integrated
Development Environments (IDEs). DialogAgent enables the
production of diverse, high-fidelity query-response pairs by simu-
lating multi-turn dialogues and contextual behaviors observed in
real-world programming scenarios. The tool significantly reduces
the reliance on manual data generation, increasing efficiency by
4.8 times compared to traditional methods. Our experiments
and online deployment demonstrate substantial improvements
in model performance for code-related question-answering tasks:
the acceptance rate of responses generated by our in-house model
is improved by 33%, after training on synthesized data generated
by DialogAgent.

Index Terms—Agent, Large Language Models, Code Question
Answering

I. INTRODUCTION

With the rise of Large Language Models (LLMs), a new
generation of LLM-based programming assistant tools has
emerged, providing developers with powerful capabilities such
as code completion [1]–[4], debugging [5]–[7], and natural
language-based code understanding [8]. These tools have
become indispensable for enhancing developer productivity,
offering support in real-time within Integrated Development
Environments (IDEs) and during various stages of software
development.

However, deploying these programming assistants in real-
world scenarios presents significant challenges. The security
and privacy of user data are of paramount importance, par-
ticularly when dealing with proprietary code and sensitive
information. This makes it impractical to rely on closed-source
commercial APIs, which may expose sensitive data to external
services. Additionally, the demand for faster inference speeds
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further constrains the deployment of large LLMs, as models
must balance computational efficiency with parameter size to
ensure usability in local or private environments. As a result,
there is a growing need for personalized smaller-sized LLMs
that can be optimized for specific user and business contexts,
all while adhering to strict privacy policies.

A key challenge in developing such personalized LLMs lies
in the training data [9]. While real-world data is invaluable
for fine-tuning LLMs, its use in training is often restricted by
user agreements and internal security policies. This makes it
impossible to leverage real user data in scenarios involving
LLM-based programming assistants. Thus, generating high-
quality synthetic training data that closely mimics real-world
development environments becomes crucial for training mod-
els that can operate effectively in these contexts. The synthetic
data must reflect the diversity of real-world interactions while
allowing precise control over data categories such as business
use cases, user perspectives, and code problem scenarios.

To address these challenges, we have developed DialogA-
gent, a tool designed to efficiently generate synthetic training
data that simulates real IDE environments and developer inter-
actions. Our tool categorizes the data based on critical dimen-
sions such as business scenarios, user intent, reference regions
for answers, and the nature of the code-related problems being
addressed. This enables the construction of targeted, high-
fidelity synthetic datasets that are well-suited for fine-tuning
LLMs in a secure and controlled manner.

Additionally, we introduce and compare manual and au-
tomated evaluation standards to assess the effectiveness of
the generated data. These evaluations are tailored to business-
specific outcomes, ensuring that the synthetic data not only
meets general quality standards but also aligns with practical
development needs. Experimental results demonstrate that
DialogAgent is able to generate questions reflecting real-world
user queries and high-quality answers compared to human
annotators. In addition, after training on the data produced by
DialogAgent, the acceptance rate of our internal is increased
by 33% which is used by our developers for daily code-related



questions answering.
In this paper, we aim to demonstrate the potential of

synthetic data generation in overcoming the limitations of
real data usage while maintaining high relevance to real-world
development scenarios. Our findings contribute to the ongoing
advancement of LLMs in software development, particularly
in enhancing their effectiveness within secure, personalized
programming assistants.

II. BACKGROUND AND RELATED WORK

A. Large Language Models

Large language models (LLMs) are powerful pre-trained
models designed to process and generate natural language.
These models undergo two key training phases: first, they are
pre-trained on vast amounts of text in an unsupervised manner,
learning general linguistic patterns and structures; then, they
are fine-tuned for specific tasks to optimize their performance
on particular applications.

LLMs used for code-related tasks can generally be grouped
into three categories based on their architecture: encoder-
only models, decoder-only models, and encoder-decoder mod-
els [10]. These models, often built on the transformer archi-
tecture, are known for their superior ability to learn from large
datasets and scale effectively to handle complex tasks.

• Encoder-only models, such as CodeBERT [11], rely on
a bidirectional transformer encoder and attention mech-
anisms to learn vectorized embeddings of input code
sequences. These models are particularly suited for tasks
that require understanding and representation of code,
such as code classification, code clone detection, and code
search, where generation is not the primary objective.

• Decoder-only models, like CodeGen [12], InCoder [13],
and Codex [14], utilize an autoregressive transformer
decoder to generate code sequences. These models excel
at open-ended tasks such as code generation, where the
goal is to produce new code from a given input prompt,
making them ideal for scenarios like autocomplete or
writing code from natural language descriptions.

• Encoder-decoder models, such as LEAM [10], combine
both an encoder and a decoder, making them versatile
for tasks that involve both understanding and generating
code. These models are effective in a range of appli-
cations, including code completion, summarization, and
generation, allowing them to handle more complex, multi-
stage tasks in development workflows.

B. Training Data for Code LLMs

Regardless of their architectural differences, most LLMs can
be fine-tuned with task-specific datasets to improve perfor-
mance on particular tasks. As a result, the need for high-quality
training data has become more critical than ever [9], [15],
[16]. In this paper, we focus on supervised fine-tuning (SFT)
on query-response pairs derived from real-world developer
interactions, which is promising to enhance the performance
of LLMs in code-related tasks. However, obtaining this data
remains a significant challenge.

There have been two main methods of collecting such
training data: human annotation and automated data gen-
eration [17]–[22]. While human annotation provides high-
quality, contextually relevant data, it is a time-consuming
and costly process that limits scalability. On the other hand,
existing automated approaches often fall short of capturing
the diversity and complexity of real developer interactions,
resulting in synthetic datasets that do not fully represent
real-world behaviors in integrated development environments
(IDEs). These limitations hinder the effectiveness of LLMs
when applied to practical coding scenarios, where diversity in
query types, code contexts, and problem-solving approaches
is critical for model success.

C. Motivation

IDE users frequently interact with code completion, expla-
nation, and repair tools embedded within the environment.
These interactions often involve multi-step, context-driven
queries that span across different programming languages,
code files, and even past interactions in the same session.
Therefore, capturing this rich context, is paramount for col-
lecting training data, representing diverse real-world scenarios.

III. DIALOGAGENT

In this section, we introduce DialogAgent, a novel method
designed to automatically generate SFT data at the repository
level with a high degree of diversity, quality, and fidelity to real
IDE usage. Figure 1 illustrates the workflow of DialogAgent,
which leverages the Q&A plugin within the VS Code IDE and
automates the interaction via a UI automation tool.

Our method begins with a set of existing online user
queries, a seed chat model (DeepSeek-Coder-33B [23]), and
the absence of compliant supervised training data that closely
reflects the day-to-day needs of developers. DialogAgent gen-
erates synthetic data by simulating multi-agent interactions
within real development environments. The LLM-based agent
acts in three roles: (1) a Q&A Developer Behavior Analyst
(QA-DBA), analyzing and modeling developer behavior in
the IDE, and producing a data generation plan; (2) a chat
configuration generator, which constructs detailed conversation
configurations (e.g., code context, query, file operations); and
(3) a response generator, which filters and selects high-quality
responses from a pool of candidate outputs.

A. QA Developer Behavior Analyst

The process of QA-DBA is shown in Figure 2. To ensure the
generated data is diverse and reflects real online interactions,
we first conduct a thorough analysis of developer behaviors
using our QA-DBA module. This agent performs a compre-
hensive review of Q&A interactions within IDEs, capturing
10 key behavioral dimensions across more than 40 categories
as shown in Table I, of which the first 7 are classified by
the Rule Matcher, and the last 3 are classified by the LLM
classifier with the prompt in Figure 3. This analysis informs a
data production plan, tuned to reflect online developer behavior
patterns, as shown in Figure 4. The QA-DBA framework



Fig. 1: Workflow of DialogAgent

Fig. 2: Process of QA-DBA

Fig. 3: Prompt for Behavior Judgment.

ensures that the generated training data mirrors real-world
developer interactions, maintaining consistency and diversity
across different query types, code contexts, and development
tasks. The LLM classifier and planner are both based on the
Deepseek-Coder-V2-Instruct [24] model.

Fig. 4: Prompt for Data Production Planning.

B. Chat Configuration Generator

The chat configuration generator takes as input the inter-
action context based on developer behavior patterns analyzed
by QA-DBA. These configurations define the repository setup
(e.g., cursor position, selected code) and trigger mechanisms
(e.g., query type, dialog turn) within the IDE (as illustrated in
Figure 7). Based on the generated configuration with Cursor
Behavior and Programming Language definitions, an open-
source repository from BigCode [25] randomly selected
to craft queries. A sample query generation prompt is il-
lustrated in Figure 5, which incorporates various attributes
such as Query Locale, Intent, and Difficulty Level. A sample
of the generated query is in Table II. In the final phase,
we harness the prompt illustrated in Figure 6 and pass it
through Deepseek-Coder-V2-Instruct [24] that filters out the
queries based on their quality. These configurations ensure
that the generated data reflects diverse development scenarios,
resulting in high-fidelity training data that closely mirrors real-
world developer interactions.



TABLE I: QA Developer Behavioral Categories

Latitudes Categories
Cursor Behavior no active file, have active file, select a block, select multiple blocks, select a line, select multiple lines
Triggering Q&A Method inline chat, chat view
Instruction Type query, quick chat template + query, quick chat template
Programming Language python, go, cpp, java, javascript, typescript, etc.
System Locale Chinese, English
Dialog Turns 1, 2, 3, 4, etc.
Locale Requirements in Query different from system locale, same with system locale, no requirement
Response Reference Regions historical dialog, selected code, context, question, error messages, general knowledge.
Difficulty Level elementary, intermediate, advanced, expert
Intent code generation, code editing, code explanation, comment generation, code repair and code general Q&A

TABLE II: Samples of the Generated Query

Intent Difficulty Level Response Reference Regions Query
Comment Generation Elementary Selected Code Generate comments for the currently selected code.
Comment Generation Intermediate Historical Dialog Any specific comments needed for the ’new’ method in Rust to clarify

its purpose and usage?
Code Editing Advanced Context Add new code logic, xlsx file path is set as a multi-line string, get

the path and then loop through xlsx to txt for each path.
Code Editing Expert Selected Code Please refactor this code to optimize it for best performance.

Code Explanation Elementary Selected Code Can you explain the significance of ‘runApp(MyApp())’ in the context
of this app’s structure?

Code Explanation Intermediate Historical Dialog, Can you go into more detail?
Code Repair Advanced Question init(android.os.Parcel) failed to verify. What’s the problem?

Code Repair Expert Error Messages
Query: Please fix the code.
Error Messages in prompt: Code: use rand::Rng;
Error Messages: unresolved import ’rand’; use of undeclared crate or
module ’rand’

Code Generation Elementary General Knowledge Write a bubbling sort algorithm.
Code Generation Intermediate Historical Dialog Continue to generate subsequent.

Code General Q&A Advanced Question Using python to solve the equation dy/dx=5y+2x.
Code General Q&A Expert General Knowledge Make a python drawing software, list the libraries you use, give demos.

Fig. 5: Prompt used by the query-generating.

C. UI Automation in the IDE Plugin

Due to the complexity of replicating real IDE environments
and the lack of a low-cost solution to operate the IDE via
APIs, we employ a UI automation tool to simulate user
interactions within the IDE. This tool executes predictable
tasks such as selecting files, positioning cursors, and triggering
the Q&A interface, based on the chat configurations. The Q&A
triggering process is shown in Figure 7. According to the input
chat configurations, the UI automation tool will first pull down
the repository and open the target file, the cursor position will
first determine whether the code is selected or not, and then
determine whether to move the cursor to the target position.
In the next step, the tool will trigger the online Q&A process

Fig. 6: Prompt used by the query quality filter.

by clicking on the icon to get to the Q&A interface and
entering the query in the dialog box. It captures the resulting
Q&A interactions, which are stored and iteratively refined
for further use in model training. The use of UI automation
not only ensures data diversity but also dramatically reduces
the manual effort required for generating large-scale datasets.



Details of the UI automation process are shown in pseudo code
in Algorithm 1.

Algorithm 1 Plugin UI automation
Input: Chat Configurations
1: Pull the target code repository;
2: Open the target file;
3: task dialogue turns← number of rounds of dialogue;
4: for t in task dialogue turns do
5: if selected code start line index

and selected code end line index then
6: Selected the target code;
7: else if cursor position start line index

and cursor position end line index then
8: Move the cursor to the target position;
9: end if

10: Open the marscode Q&A interaction page;
11: Type in a query to trigger an online Q&A process;
12: Capture the necessary information from the trace file;
13: Store the Q&A information in the database;
14: end for
Output: Multi-turn Dialogue Prompts

D. Response Generator

After generating diverse and complex queries, high-quality
responses are crucial for producing a useful training dataset.
To achieve this efficiently, we employ a multi-model re-
sponse generation pipeline using models from the DeepSeek
series [24], [26]. The pipeline comprises two phases: response
generation and response judgment.

1) Response Generation: In the response generation pro-
cess, we select three LLMs from the same series as our
response generators. These include Deepseek-Coder-33B-
Instruct [23], Deepseek-Coder-V2-Instruct [24] and Deepseek-
V2.5 [26], all of which perform well on code benchmarks such
as HumanEval [14] and EvalPlus [27].Each query produced
by UI automation is used to prompt all models to generate
responses, forming a set of candidate responses for training.
In the next phase, scoring will be conducted to select the best
response for each query.

However, not every query has a perfect response as some-
times all candidate responses are not of high quality. Instruc-
tions without an high-quality response will be filtered out,
which may lead to the waste of instructions. Therefore, we
also optimize the pool of LLMs to enhance the probability of
generating perfect responses. This is achieved through a self-
improvement method, that is, fine-tuning the models within
the pool using the data synthesized from DialogAgent itself.

2) Response Judgment: In the judgment process, we use
the LLM-as-a-Judge methodology [28] to annotate candidate
responses with GPT-4o. We combine LLM scoring, ranking
and rule-based deduction to select the optimal answer for each
query:

• Response scoring. We use GPT-4o to score each answer
from 1 to 5, comprehensively evaluating the ability to
follow instructions and the quality of the answer. GPT-
4o is asked to first output the rationale, and then produce
the score. The prompt used is given in Figure 8.

• Rule-based deduction. For response requirements that
can be easily judged by rules but where the model has
a chance of making incorrect judgments, we employ a
rule-based deduction method for scoring. This score will
be subtracted from the score obtained in the Response
Scoring phase to determine the final score of the answer.
Response that ultimately score 5-point will be used as
our final training set. The deduction rules are detailed in
Table III.

• Response comparison. If an instruction has more than
one 5-point response, we will use GPT-4o to rank the
responses and select the best one for the training set.
The prompt used for comparison is given in Figure 9.

We only select top-scoring answers for training, and queries
without a 5-point candidate answer will not be included in the
training set to ensure the quality of the training data.

IV. EXPERIMENT

We investigate the following research questions (RQ) to
study the effectiveness and efficiency of DialogAgent:

RQ1. What is the impact of efficiently expanding high-
quality code question-and-answer data on code Q&A
systems?

RQ2. How can synthetic data maintain consistency with
real development environments, particularly in multi-
turn dialogue data based on historical conversations?

RQ3. What is the quality of automatically generated code
question-and-answer responses?

We discuss evaluation metrics, results and analysis for each
research question in the rest of this section.

A. Experiment Setup

We first de-identified real developer Q&A data to ensure
compliance with privacy standards. For evaluation, we bal-
anced the dataset according to user intent and programming
languages, selecting a random sample of 300 entries. The
evaluation process was carried out by developers proficient in
various programming stacks who manually scored the model’s
responses.

The scoring process is shown in Figure 10. Each model’s
final score is the average of two rounds of inference, with
each round going through three stages: initial scoring, quality
inspection, and final score confirmation. A team of 21 an-
notators handled the scoring process: 13 for initial scoring,
6 for secondary quality inspection, and 2 for final score
confirmation. We used a penalty points system (Table IV) for
scoring, with a maximum score of 5.

We established two key evaluation metrics:
• Usability Rate (UR): The proportion of responses

deemed usable (FinalScore ≥ 4).
• Perfect Score Rate (PSR): The proportion of responses

judged as perfect (FinalScore = 5).
We use Deepseek-coder-33B-Instruct as the seed model and

employ high-quality Q&A data produced by DialogAgent for
supervised finetuning (SFT) , and each SFT model iterates for



Fig. 7: Framework of the Automation UI Tool

Fig. 8: Response Scoring Template

3 epochs and follows the experimental setup of [23]. During
inference, we generated two response variations per prompt
using a temperature of 0.3 and top-p of 0.95. The results were
averaged over two rounds of inference.

B. RQ1. Impact of High-Quality Code Q&A Data on Code
Q&A Systems

In this section, we assess the impact of DialogAgent on
six key code Q&A tasks: code generation, code editing,
code explanation, comment generation, code repair, and gen-
eral Q&A. The comparison results between the seed model
(DeepSeek-33B-Instuct) and the fine-tuned model (DeepSeek-
33B-Instruct-SFT) are shown in Tables V, VI and VII.

We observe significant improvements across all tasks and
metrics for the fine-tuned model. For code generation tasks
such as code repair, code generation, and code editing, UR
increased by 11%, 19%, and 50%, respectively. For code
understanding tasks such as code explanation, general Q&A,
and comment generation, UR improved by 15%, 2%, and 55%,
respectively.

To study the efficiency compared with human annotators, we
asked the annotation team to construct code Q&A pairs with
the help of online search and other intelligent tools. However,
manual construction of code Q&A pairs is time-consuming,
yielding only 30 pairs per day per annotator. In contrast, Di-
alogAgent can generate 1,440 pairs per day per instance — 4.8



Fig. 9: Response Comparison Template

TABLE III: The Deduction Rules

Scene Deduction Item Deduction Score
Inline Chat Text description before the code 1
Chat View Lack of basic text description 1

Inline Chat & Chat View
Language of response inconsistent with the instruction request and system setting. 1

Incomplete code markdown symbols 1
Altering the original code when editing is no required 2

Revealing the requirements in the prompt 2
Incomplete response, truncated in the middle of words or code 5

TABLE IV: The Penalty Points System

Category Intent Penalty Points

Content Errors

Common Scene code errors, description error, response repetition, programming language errors, re-
sponse truncation, not meeting user requirements

Special Scene

Code Explanation: nonsense content, missing critical content
Comment Generation: nonsense content, missing function header comments, function
header comments out of specification, comment locale error
Code Repair: missing/redundant code repair
Code Editing: missing/redundant code editing

Format Issues

Common Scene locale error, markdown error, response formatting issues

Special Scene
Code Repair: lack of complete fix code, lack of basic text description
Inline Chat: text description before the code
Chat View: lack of basic text description

TABLE V: Manual Scoring Results

Model PSR UR
DS-33B-Inst 26.00% 39.00%

DS-33B-Inst-SFT(Ours) ↑46.64% ↑59.40%

times the productivity of human annotators. By scaling com-
putational resources, multiple automation instances can further
increase production capacity. Additionally, human inspection
also reported that synthetic data generated by DialogAgent
demonstrates superior variability and consistency with real-
world distributions compared to manually generated data.

C. RQ2. Consistency with the Development Environment

Ww designed 3 groups of ablation experiments to verify the
effectiveness of its online consistency, data type increment,
and data increment, respectively, and the overall experimental
results are compared as in Table VIII, the results of the code

generation intention as in Table IX, and the results of the code
understanding intention as in Table X.

Synthetic data’s consistency with online reality. We
generated a batch of data randomly, incorporating elements
such as arbitrary programming languages, selected code frag-
ments, and queries, etc. By employing identical training and
inference parameters, we fine-tune the Deepseek-coder-33B-
Instruct based on the two types of synthetic data, separately.
The comparison result is DS-33B-Inst-SFT(Random) VS DS-
33B-Inst-SFT(Ours). Evidently, the data generated by Dialo-
gAgent overall performs better, an absolute increase of 5% in
PSR and 6% in UR. It’s noteworthy that in code editing and
comment generation, the absolute values of UR have improved
by more than 10%.

Data type increment of synthetic data. Multi-turn di-
alogue capability of a conversational model is important
for the performance of IDE code Q&A. However, in the



TABLE VI: Manual Scoring Results in Code Generation Intents

Model Code Repair Code Generation Code Editing
PSR UR PSR UR PSR UR

DS-33B-Inst 19.23% 44.44% 28.13% 53.13% 22.50% 32.50%
DS-33B-Inst-SFT(Ours) ↑44.44% ↑55.56% ↑56.25% ↑72.00% ↑65.00% ↑82.50%

TABLE VII: Manual Scoring Results in Code Comprehension Intents

Model Code Explanation Code General Q&A Comment Generation
PSR UR PSR UR PSR UR

DS-33B-Inst 19.23% 38.46% 44.07% 67.78% 16.67% 23.33%
DS-33B-Inst-SFT(Ours) ↑40.46% ↑53.85% ↑50.74% ↑69.26% ↑78.57% ↑78.57%

Fig. 10: Process of Scoring

TABLE VIII: Manual Scoring Results for Different Generated
Data

Model PSR UR
DS-33B-Inst-SFT(Ours) 46.64% 59.40%

DS-33B-Inst-SFT(w/o MTD) 43.10% 52.86%
DS-33B-Inst-SFT(subset) 46.28% 58.11%

DS-33B-Inst-SFT(subset w/o MTD) 42.47% 52.18%
DS-33B-Inst-SFT(Random) 41.47% 53.54%

complex task of generating high-quality multi-turn dialogue
data, our DialogAgent provides robust support. We compared
the effectiveness of fine-tuned models using synthetic data,
considering the presence or absence of multi-turn dialogue
data (abbreviated as MTD), i.e., DS-33B-Inst-SFT(Ours) VS
DS-33B-Inst-SFT(w/o MTD) and DS-33B-Inst-SFT(subset)
VS DS-33B-Inst-SFT(subset w/o MTD). The results indicate
that the multi-turn dialogue data generated by DialogAgent
can further enhance the performance of the SFT model, with
an absolute increase of 3% in the PSR and 6% in the UR.
For intents with a stronger historical dialogue dependency
(code editing and code generation), there is at least a 7%
improvement in UR.

Increment of synthetic data. DS-33B-Inst-SFT(subset) is
a subset of the final version dataset DS-33B-Inst-SFT(Ours)
with half the data volume. The comparison results indicate
that the model with the increased SFT data from DialogAgent
can sustain stable effects on the old period evaluation set.

In the same time, the final version of DS-33B-Inst-
SFT(Ours) also includes a new batch of data generated based
on online data from another time period, and we sampled
online data from this time period to serve as a new evaluation
data. The comparison results in the new evaluation data are
presented in Table XI, XII and XIII. Notably, the model with
the increased SFT data generated in the new period performs
significantly better on the new period’s online data, with PSR
achieving a 4% increase, UR a 1% increase.

Given that DialogAgent can autonomously generate data
closely resembling online user behavior based on developers’
online activity, we can infer that an SFT model based on
DialogAgent can achieve continuous automatic optimization.

D. RQ3. Automating High-Quality Code Q&A Responses

To ensure the quality of the generated responses, we
evaluate the overall quality and optimization benefits of the
response generator, and also assessed the consistency between
the automated judgment system and human scoring.

Our annotation team manually score 430 data samples with
responses generated by each LLM in our response generator
pool. Table XV shows the overall PSR of the LLM pool and
the PSR of each LLM in the pool. Although the PSR of each
model is not high, when combined together, it reaches 79.76%.
Since each model excels in different types of questions, the
approach of using the LLM pool as a response generator



TABLE IX: Manual Scoring Results for Different Generated Data in Code Generation Intents

Model Code Repair Code Generation Code Editing
PSR UR PSR UR PSR UR

DS-33B-Inst-SFT(Ours) 44.44% 55.56% 56.25% 72.00% 65.00% 82.50%
DS-33B-Inst-SFT(w/o MTD) 42.78% 58.33% 53.13% 65.63% 61.54% 69.23%

DS-33B-Inst-SFT(subset) 51.11% 61.11% 62.50% 71.88% 55.00% 72.50%
DS-33B-Inst-SFT(subset w/o MTD) 42.78% 52.78% 53.13% 59.38% 55.00% 64.50%

DS-33B-Inst-SFT(Random) 42.78% 52.78% 50.00% 71.88% 60.00% 62.50%

TABLE X: Manual Scoring Results for Different Generated Data in Code Comprehension Intents

Model Code Explanation Code General Q&A Comment Generation
PSR UR PSR UR PSR UR

DS-33B-Inst-SFT(Ours) 40.46% 53.85% 50.74% 69.26% 78.57% 78.57%
DS-33B-Inst-SFT(w/o MTD) 50.00% 53.85% 59.26% 62.96% 53.33% 63.33%

DS-33B-Inst-SFT(subset) 46.15% 65.38% 59.26% 62.96% 55.17% 68.97%
DS-33B-Inst-SFT(subset w/o MTD) 50.00% 61.54% 48.15% 55.56% 46.67% 63.33%

DS-33B-Inst-SFT(Random) 33.33% 50.00% 57.69% 65.38% 50.00% 66.67%

TABLE XI: Manual Scoring Results in New Evaluation Data

Model PSR UR
DS-33B-Inst-SFT(subset) 57.91% 63.92%
DS-33B-Inst-SFT(Ours) ↑61.90% ↑64.17%

combines the strengths of the various LLMs, enabling
79.76% of the data produced in one round has the quality to
be included in the training set. Despite this, some prompts still
lack perfect answers and will be added to the next production
chain until a perfect answer appears. This has to some extent
affects the efficiency of our data production. In order to
increase the proportion of data that can be used as a training set
in each round of data production, we also iteratively optimize
the LLM pool through self-improvement method. Table XIV
illustrates that after fine-tuning all the models in the LLM
pool with the training set from the last production round, the
PSR for each intent significantly increases and the average
PSR has an increase of 8.65%. The PSR for the Comment
Generation intent, particularly, increased by 19.32%.

To evaluate the accuracy of our automated judgment system,
our annotation team manually scores 600 responses with
distinct instructions. Since the responses we ultimately select
for the training set are only 5-point responses, the accuracy
rate of scoring 5-point responses is used as a metric to assess
our judement system:

Accuracy5 =
pred5 pos

pred5 pos+ pred5 neg
(1)

Accuracy5 represents the proportion of 5-point responses
scored by our judgement system that align with the scores
given by human annotators. It measures the degree of agree-
ment between the judgement system’s scoring of 5-point re-
sponses and the human evaluations. Also, pred5 pos indicates
instances where both judgement system and human annotation
assigned a score of 5, and pred5 neg represents instances
where the judgement system assigned a score of 5, but the
human annotation did not.

Considered human scoring as the ground truth, the
Accuracy5 for the judgement system is 88.47%. Among the
pred5 neg instances, 96.00% are usable responses, scored

more than 3-point by human annotators. 81.62% of the re-
sponses manually scored as 5-point are recalled by the system.
This indicates that our judgment system has a relatively high
consistency with human scoring, and most of the inconsistently
scored 5-point responses are still usable.

V. DISCUSSION AND LESSONS LEARNED

Industrial deployment confirms the practicality of Dialo-
gAgent. DialogAgent is integrated into the model training of
our in-house programming assistant, MarsCode, which offers
functionalities such as code completion, intelligent Q&A, code
generation, explanation, and repair. Along with the launch of
DialogAgent’s SFT model, the online effectiveness indicator-
acceptance rate (percentage of shown answer accepted by the
user) was improved by 33%. The deployment of DialogAgent
has demonstrated its practicality and effectiveness in real-
world code Q&A scenarios, and also marks the beginning
of a continuous improvement cycle. DialogAgent’s success
in industrial application highlights its role in advancing AI-
powered development tools.

Insights from Online User Behavior Through analyzing
real-world user interactions, several key behavioral patterns
have been identified, which provide valuable insights for
further optimizing DialogAgent.

• Cursor Behavior: The top 3 cursor behaviors observed
among users are: no active file (40%), having an active
file (33%) and selecting a code block (35%). These
behaviors indicate that users often asking questions in a
passive browsing state, which highlights the necessity of
automated context retrieval to locate files of interest
to help models better understand the context.

• Instruction Type: Although pre-configured quick chat
buttons are provided, such as explain code and generate
comments, which are configured with pre-defined prompt
templates and will appear when a code snippet is selected
by the user, two-thirds of users prefer to directly input
their questions instead of using these chat options. This
finding highlights the need for natural and flexible query
handling in the Q&A tool.



TABLE XII: Manual Scoring Results in Code Generation Intents for New Evaluation Data

Model Code Repair Code Generation Code Editing
PSR UR PSR UR PSR UR

DS-33B-Inst-SFT(subset) 46.00% 48.00% 80.00% 80.00% 48.00% 60.00%
DS-33B-Inst-SFT(Ours) ↑50.00% ↑50.00% ↑82.00% ↑84.00% ↑56.00% ↑62.00%

TABLE XIII: Manual Scoring Results in Code Comprehension Intents for New Evaluation Data

Model Code Explanation Code General Q&A Comment Generation
PSR UR PSR UR PSR UR

DS-33B-Inst-SFT(subset) 66.00% 72.00% 54.00% 64.00% 56.00% 64.00%
DS-33B-Inst-SFT(Ours) ↑78.00% ↑78.00% 54.00% ↑68.00% 56.00% 64.00%

TABLE XIV: Manual Scoring Results for Response Generators with Optimization

Model Code Repair Code Generation Code Editing Code Explanation Code General Q&A Comment Generation
PSR PSR PSR PSR PSR PSR

LLM-Pool 72.72% 89.65% 86.48% 94.18% 92.10% 52.27%
LLM-Pool-SFT ↑85.71% ↑96.55% ↑91.89% ↑98.84% ↑94.74% ↑71.59%

TABLE XV: Manual Scoring Results for Response Generators

Model PSR
LLM Pool (all models) 79.76%

DS-33B-Inst 26.60%
DS-V2.5 64.65%

DS-Coder-V2-Inst 68.14%

• Dialog Turns: Most conversations between users and the
assistant consist of 5 turns or fewer, with a near 1 : 1
ratio of single-turn to multi-turn dialogs. To improve the
effectiveness of multi-turn dialogs, it is essential to first
enhance the quality of single-turn responses, ensuring that
users find value in the tool and continue engaging with
it over longer conversations.

• Response Reference Regions: When responding to
users, the most referenced information sources are the
selected code, the user’s question, and general program-
ming knowledge. This suggests that focusing on these
reference origins can significantly improve the relevance
and accuracy of the responses provided by the tool.

• User Intent Classification: After classifying the intent of
user questions, each type of intent has a dominant subcat-
egory, which accounts for nearly half of the interactions.
For example:

– Code Explanation: Function and method explana-
tions are the most frequent.

– Code Generation: Test code generation is the most
common.

– General Q&A: Usage of programming language syn-
tax is the most prevalent query.

– Code Repair: The most triggered is fixing compila-
tion errors.

– Code Editing: Code translation to another program-
ming language is the most common editing request.

– Comment Generation: Comments for functions and
methods are the most frequent requests.

The Limitation of DialogAgent. Despite the undeniable
advantages of DialogAgent, there are certain limitations that

need to be addressed. More scenarios expansion requires
some development labor. Although it can efficiently handle
mainstream code Q&A scenarios, customization and adap-
tation for more niche or emergent application areas pose a
challenge, demanding further manpower and expertise. Addi-
tionally, there’s a need for a finer classification of scenarios,
such as classifications based on knowledge points, e.g., code
editing including code optimization, code refactoring, code
translation, etc. Such intricate classifications can enrich the
diversity of the synthetic data and improve the SFT effect
of synthetic data on LLM. Moreover, we will continually
broaden and optimize our model pool to keep pace with
the rapid development of LLM and meet the ever-evolving
requirements of developers. The optimization of the model
pool can effectively improve the recall rate of high-quality
responses, which in turn greatly improves the robustness and
versatility of DialogAgent. This ongoing optimization process
underscores our commitment to delivering a tool that stays
relevant in the face of dynamic development landscapes and
user expectations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explored the challenges and solutions
associated with producing high-quality synthetic training data
in the scenario of developing LLM-based programming assis-
tants, while ensuring data security and privacy. We introduced
DialogAgent capable of efficiently generating synthetic data
that mimics real coding scenarios. This tool synthesizes data
based on various user perspectives, significantly improving the
performance of fine-tuned models in the empirical evaluation.
The deployment of DialogAgent to generate training data of
our in-house model also experienced a 33% of the improve-
ment of the acceptance rate by our users.

In the future, we consider methods for synthesizing per-
sonalized responses and explore more data synthesis schemes
and their effects during the reinforcement learning and direct
preference optimization phases of model training.
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