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ABSTRACT
Large languagemodels (LLMs) have revolutionized code completion
tasks. IDE plugins such as Copilot can generate code recommen-
dations, saving developers significant time and effort. However,
current evaluation methods for code completion are limited by
their reliance on static code benchmarks, which do not consider
human interactions and evolving repositories. This paper proposes
RepoSim, a novel benchmark designed to evaluate code comple-
tion tasks by simulating the evolving process of repositories and
incorporating user behaviors. RepoSim leverages data from an IDE
plugin, by recording and replaying user behaviors to provide a
realistic programming context for evaluation. This allows for the
assessment of more complex prompt strategies, such as utilizing
recently visited files and incorporating user editing history. Addi-
tionally, RepoSim proposes a newmetric based on users’ acceptance
or rejection of predictions, offering a user-centric evaluation crite-
rion. Our preliminary evaluation demonstrates that incorporating
users’ recent edit history into prompts significantly improves the
quality of LLM-generated code, highlighting the importance of tem-
poral context in code completion. RepoSim represents a significant
advancement in benchmarking tools, offering a realistic and user-
focused framework for evaluating code completion performance.
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1 INTRODUCTION
Large language models (LLMs) have spurred numerous innovative
applications, particularly in automatic code completion tasks. In-
tegrated Development Environment (IDE) plugins like Copilot [7]
and CodeWhisperer [8] can generate code recommendations in real-
time as developers write code, potentially saving up to 26 26% of
developers’ time and effort on coding [5]. Recognizing the immense
value of LLM-driven auto-completion, researchers have extensively
explored this domain, leading to the rapid development of newmod-
els and prompting strategies. Consequently, a systematic evaluation
method for these models and strategies is essential to facilitate their
improvement and ensure their practical applicability in real-world
coding environments.

Popular evaluation datasets for LLMs, such as HumanEval [3]
and DS-1000 [13], focus on code generation of standalone functions
at the single-file level, making the first step towards assessing LLMs’
capabilities in implementing algorithms and solving problems. To
evaluate code completion in multi-file repositories, researchers
have proposed repository-level benchmarks for code completion
tasks, such as RepoFusion [20] and RepoBench [17] which provide
context retrieved from the repositories.

However, current evaluation methods use static code as a bench-
mark and do not consider human behaviors. This gap makes it
difficult to comprehensively evaluate code completion tasks due to
the following challenges.

Challenge 1: Construct of realistic prompts. In practice,
prompts for code completion models can leverage various pieces of
information available in the IDE, such as code from all opened or
recently opened files, edit history, and contents in the current file,
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to improve the quality of generated code [11, 19]. Evaluating this
strategy is infeasible with a static repository because it lacks the
necessary context of open files during code editing.

Furthermore, existing benchmarks construct prompts using the
prefix and suffix of the ground truth code, as well as contents
from other files in the repository. However, this information can
be different from what is present during real-time code completion.
For instance, the suffix may be further edited before it is submitted
to the repository, making the prompts less realistic.

Challenge 2: EvaluationMetrics. Another challenge is assess-
ing the output of code completion tools, as the decision to accept or
reject a prediction is inherently a human behavior. Existing bench-
marks use the similarity to the ground truth code or the pass rate
against pre-defined test cases to evaluate the correctness of the
generated code [1, 3, 4, 6, 9, 10, 13–17, 21, 22]. However, to the best
of our knowledge, there is no empirical study and clear evidence
that these metrics accurately reflect human preferences and are
positively related to the acceptance rate of human developers.

In this paper, we introduce RepoSim, a novel approach for eval-
uating code completion tasks by simulating the evolving process
of repositories and considering user behaviors. We utilize a code
completion IDE plugin deployed within our collaborated company,
actively used by thousands of developers daily. The simulation is
conducted by recording and replaying user behaviors during pro-
gramming sessions. RepoSim stands out from existing benchmarks
in two key aspects:
• Prompt Strategy. It provides the actual programming context in
which the code to be generated is written, enabling the evaluation
of more prompt strategies (such as recently visited files);

• EvaluationMetrics. By observing users’ acceptance or rejection
behaviors towards the plugin’s predictions, we propose a new
metric that better aligns with users’ preferences compared to
current evaluation criteria;
These unique features make RepoSim a valuable tool for as-

sessing code completion performance in a more realistic and user-
centric manner.

Our preliminary experimental result reveals several prompt
strategies that significantly improve the quality of predicted code
by instructing LLMs to make more reasonable predictions. For ex-
ample, providing the model with prefix and edit history is more
effective than with the prefix and suffix, while the later is widely
used by current benchmarks.

Overall, the main contributions of the paper are:
• We introduce RepoSim, a simulation framework that can simulate
the evolving process of a repository by recording and replaying
user behaviors. This approach provides a more realistic evalua-
tion of code completion tasks;

• By observing real users’ acceptance or rejection of predicted
code, we propose a new metric that better aligns with users’
preferences compared to current evaluation criteria.

• Using RepoSim, we evaluated both prompt strategies and models,
concluding that incorporating the user’s most recent editing
history can significantly improve the quality of the completed
code by LLMs. This suggests that the code to be completed is not
only related to its neighbors in space, but also to its neighbors in
time;

2 BACKGROUND AND RELATEDWORK
2.1 Large Language Models for Code
Code completion is a critical component in enhancing productivity
of modern software Development. These task involves automati-
cally generating code snippets or completing existing code based
on given inputs or contexts. General-purpose LLMs, such as GPT-4,
have demonstrated exceptional performance across various devel-
opment tasks, including code generation. These models, trained on
diverse datasets, can generate code snippets, complete functions,
and even provide debugging assistance based on natural language
prompts. Their high pass rates on benchmarks such as HumanEval
highlight their capabilities in producing accurate and functional
code. Specialized LLMs, designed primarily for code-related tasks,
often outperform general models in generating precise and contex-
tually appropriate code. Examples include Codex, DeepSeek Coder,
and StarCoder, which are fine-tuned to handle code-specific data us-
ing techniques like next-token prediction and filling-in-the-middle
(FIM). These models excel in producing accurate code completions
and generating new code snippets within given contexts.

2.2 Evaluation of Code Completion
Evaluating LLMs is crucial for understanding their capabilities, espe-
cially given their black-box nature. Benchmarks like HumanEval [3]
and MBPP [1] assess models on relatively simple Python functions,
while more advanced benchmarks such as APPS [10] and ClassE-
val [6] extend this to more complex problems and class-level code
generation. However, these benchmarks typically assess models on
isolated tasks without considering the broader context of real-world
coding environments.

Recent benchmarks, such as CrossCoderEval [4], RepoBench [17],
and RepoEval [22], focus on repository-level tasks, including code
completion and project-oriented evaluations. Despite their advance-
ments, these benchmarks do not consider human behavior nec-
essary for thorough evaluation. Thus, the need for more robust
evaluation methods persists.

These benchmarks offer standardized tasks and metrics to com-
pare the capabilities of different models, typically consisting of a
natural language description as the input (prompt) and the corre-
sponding code as the ground truth output. Metrics such as exact
match, code similarity methods, and passing rate (Pass@k), which
executes the model output against test cases to assess correctness,
are commonly used.

3 APPROACH
In this section, we discuss our proposed framework for simulating
and evaluating code completion systems. Our approach aims to
push the boundaries of current practices by proposing a novel
method to closely replicate real-world programming environments.
We outline the architecture of our simulation system in Section 3.1,
explain how we simulate the online environment in Section 3.3,
and present our unique evaluation metrics in Section 3.4.
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Figure 1: Architecture

3.1 System Architecture
Our simulation system, RepoSim, is designed to mimic the real-
world operation of a code completion plugin. As depicted in Fig-
ure 1, the system consists of four sequential stages: environmental
perception, prompt construction, server interaction, and editor in-
teraction.
(1) Environmental Perception Stage gathers valuable informa-

tion from the active IDE, such as code snippets from working
directories and IDE events.

(2) Prompt Construction Stage generates prompts for code com-
pletion tasks using information obtained from the environmen-
tal perception stage.

(3) Server Interaction Stage facilitates communication between
the IDE and the server hosting LLMs, sending requests (prompts)
and receiving results (generated code).

(4) Editor Interaction Stage displays the results in the editor,
allowing users to interact with them by accepting or rejecting
the suggestions.

3.2 Prompt Strategies
Our approach stands out because it combines realistic simulation
using actual code from the code completion plugin with the di-
rect integration of evaluated prompt strategies into the plugin,
significantly reducing effort and improving practical applicability.
Supported prompt strategies include:
• Prefix-only uses only the preceding code (prefix) of the input
cursor as the prompt. This straightforward approach serves as
our baseline prompt strategy.

• Fill-in-the-middle uses both the prefix and suffix in prompts,
offering a more realistic approach by providing better context
for code completion.

• Edit History incorporates the user’s edit history before the
prefix. Edit history is represented as a git diff and ranked based
on file activity (recent edited ranked first).

• Similar Code Snippets from Opened Files strategy adds to
the prompt similar code from opened files, retrieved using the
fastText [2, 12] algorithm for similarity measurement.

• Code Snippets Hovered by the Cursor History strategy in-
cludes lines of code where the cursor hovered before the code
completion trigger point in the prompt.

• Mixed Strategies allow the user to select a list of strategies from
above to study the effectiveness of combining different prompt
strategies.

It is important to note that the prefix, suffix and code snippets
collected by RepoSim differs from those in existing benchmarks,
as RepoSim records in real-time when the programmer writes the
code and triggers code completion. In contrast, these contents may
have been altered before they are submitted to the repository where
other benchmarks collect data, making them less realistic.

In addition, as the performance may vary on the number of the
lines gathered from these strategies, the length of the prompt can
also be configured while using RepoSim.

3.3 Record and Replay
To capture users’ behaviors and collect data to construct prompts,
we use a code completion plugin prototype that reports IDE events,
including file open/close, cursor movements, code editing, and user
reactions to code completion suggestions.

Instead of sending entire snapshots of repositories at the time of
editing, our plugin sends the code diff with the previous commit ID
to the server. This allows us to reconstruct repository snapshots at
each editing point by replaying the recorded users’ editing actions.

During the replaying phase, we simulate the evolution of code
changes and corresponding user behaviors. By fetching the repos-
itory with the given commit ID and applying the code diff, we
fully recover the project snapshot at each point. Replaying users’
behaviors determines opened files and cursor positions, restoring
the complete IDE environment.

Our simulation system enables two key tasks: comparing LLMs’
abilities in real deployment scenarios and evaluating different prompt
strategies. Each code change is treated as a code completion task,
allowing LLMs to be tested by replacing the server address. Various
prompt strategies can be compared by adding potential context
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to the prompt before sending a request to the server-based model,
determining the best strategy for user acceptance.

3.4 Evaluation Metrics
We propose a novel evaluation metrics, ByteMetric, based on classi-
fication model, addressing the limitations of existing metrics such
as code similarity and unit testing which ignore semantics of code
and do not necessarily related to the user acceptance and rejection
behavior.

ByteMetric leverages online data and utilizes features such as
code structure match, longest common sequence match, and users’
acceptance or rejection behavior towards predictions and corre-
sponding real editing codes. These features are used to train a
classification model, with users’ acceptance or rejection behavior
serving as the label for the model. The resulting model serves as a
metric to predict how humans would react when evaluating LLMs
in the RepoSim testing system.

4 EMPIRICAL EVALUATION
In this section, we present experiment design and preliminary re-
sults to assess the effectiveness of RepoSim in exploring prompt
strategies and models for code completion.

4.1 Research Questions
Our study is guided by the following research questions:
Q1. Effectiveness of the Simulation System: Does this simula-

tion system help find good prompts and achieve better accep-
tance rate than other prompt strategies?
To answer this question, we use prompts produced by dif-
ferent prompt strategies as summarized in Section 3.2 to
generate code snippets for open-source and industrial repos-
itories. We compare the acceptance rate of these strategies.

Q2. Model Performance: How do different code completionmodels
perform with RepoSim?
To answer this question, we use open-source and commer-
cial models to generate code snippets with different prompt
strategies and assess the achieved acceptance rate. We expect
to gain insights on model training improvements such as
training data cleaning, filtering and augmentation to include
more diverse code and repository data.

Q3. Evaluation Metrics: To what extent, the evaluation metrics
are aligned with human accept and reject behaviors?
The evaluation metrics are used to predict human acceptance
or rejection of code snippets generated by LLMs. Therefore,
we investigate the accuracy and recall rate of the metrics to
make sure they are able to serve as the ground truth for the
automated evaluation of different prompt strategies.

4.2 Preliminary Results
We conducted the initial experiment by collecting prefix, suffix and
edit history using the prototype of the code completion plugin from
developers’ daily usage in our collaborated company. Our collected
dataset includes 1053 code completion tasks in Python, 884 in Go,
725 in JavaScript and 975 in TypeScript.

Table 1 provides a comparative evaluation of different prompt
strategies on StarCoder2 [18]. We use the strictest metrics, exact
match, for this experiment.

Table 1: Experimental Results

Language Prompt Strategy Exact Match

Python

Prefix 0.17
Prefix + Edit History 0.27

Prefix + Suffix 0.17
Prefix + Suffix + Edit History 0.24

Go

Prefix 0.21
Prefix + Edit History 0.29

Prefix + Suffix 0.20
Prefix + Suffix + Edit History 0.29

JavaScript

Prefix 0.22
Prefix + Edit History 0.3

Prefix + Suffix 0.19
Prefix + Suffix + Edit History 0.27

TypeScript

Prefix 0.21
Prefix + Edit History 0.33

Prefix + Suffix 0.2
Prefix + Suffix + Edit History 0.32

The experimental results consistently demonstrate that the Prefix
+ Edit History strategy significantly outperforms the other prompt
strategies across all evaluated programming languages and showed
the highest Exact Match scores. Comparing with the Prefix-only and
Prefix + Suffix strategies, the Prefix + Suffix + Edit History strategy
also performed better, suggesting that combining suffix informa-
tion with edit history can further improve performance but not as
significantly as edit history alone.

To further validate the effectiveness of edit history, our future
research should include a comparison with Prefix + Edit History
and strategies involing Similar Code Snippets from Opened Files. In
addition, the ByteMetric and real user acceptance rate should also
be measured on the dataset and compared with exact match to study
the effectiveness of our proposed classification-based metrics.

5 CONCLUSION AND FUTUREWORK
In this paper, we introduced RepoSim, a novel simulation frame-
work designed to evaluate code completion tasks by considering
the evolving process of repositories and user behaviors. RepoSim
addresses the limitations of existing benchmarks by providing a
realistic programming context through the recording and replay-
ing of user behaviors, enabling the assessment of more complex
prompt strategies and user-centric evaluation metrics. Our pre-
liminary results demonstrate that incorporating users’ recent edit
history into prompts significantly improves the quality of LLM-
generated code, highlighting the importance of temporal context
in code completion.

The promising results from our preliminary evaluation of RepoSim
open several directions for future research:
• Extending the Dataset and User Base: Expanding the dataset
by including more diverse user interactions such as opened files
and contents hovered over by the cursor.
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• Evaluation on ByteMetric: Future work will involve training
the ByteMetric model and conducting more extensive experi-
ments to validate the proposed classification-based metrics in
the ability of predicting user acceptance and rejection behaviors.

• Exploring Hybrid Prompt Strategies with More Models:
Investigating the combination of multiple prompt strategies, such
as integrating edit history with context from recently opened files
or cursor-hovered snippets, can further enhance the performance
of code completion models. Exploring these hybrid strategies
on different models will also provide deeper insights into their
practical applicability and model traning insights.

• Collaboration with Industry Partners: Partnering with soft-
ware development companies to deploy RepoSim in their develop-
ment workflows will provide valuable industry-specific insights.
These collaborations can help tailor RepoSim to meet the unique
needs of different development teams and projects, further vali-
dating its utility and impact in diverse, real-world settings.

By pursuing these directions, we aim to refine RepoSim into a robust,
versatile tool that not only benchmarks prompt strategies and code
completion models effectively but also drives the development of
more intelligent and context-aware code completion systems. We
believe that RepoSim has the potential to transform the evaluation
landscape for code completion, ultimately leading to more efficient
and productive coding experiences for developers.
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