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Abstract—The Go language (Go/Golang) has been attracting
increasing attention from the industry over recent years due to
its strong concurrency support and ease of deployment. This
programming language encourages developers to use channel-
based concurrency, which simplifies the development of concurrent
programs. Unfortunately, it also introduces new concurrency
problems that differ from those caused by the mechanism of
shared memory concurrency. However, there are only few works
that aim to detect such Go-specific concurrency issues. Even
state-of-the-art testing tools will miss critical concurrent bugs
that require fine-grained and effective interleaving exploration.

This paper presents GoPie, a novel testing approach for
detecting Go concurrency bugs through primitive-constrained
interleaving exploration. GoPie utilizes execution histories to
identify new interleavings instead of relying on exhaustive
exploration or random scheduling. To evaluate its performance,
we applied GoPie to existing benchmarks and large-scale open-
source projects. Results show that GoPie can effectively explore
concurrent interleavings and detect significantly more bugs in
the benchmark. Furthermore, it uncovered 11 unique previously
unknown concurrent bugs, and 9 of which have been confirmed.

Index Terms—Go, Concurrency Testing, Fuzzing

I. INTRODUCTION

The Go language offers two concurrency mechanisms:
Communicating Sequential Processes (CSP) and traditional
ones based on shared memory. CSP is a concurrency model
in Go that enables the communication between independent
processes based on channels. A channel acts as a pipeline
to connect different processes, allowing them to coordinate
different tasks and share data. The usage of channels makes
the complex synchronization operations transparent to users,
making it easier to implement concurrent programs than
other programming languages without such built-in supports.
Consequently, since its open source in 2009, the Go language
has consistently grown in popularity. However, recent works [1],
[2], [3] have shown that the utilization of channels does
not eliminate concurrency bugs. Concurrency bugs are still
pervasive due to the insufficient understanding of such new
mechanisms, which can lead to resource leaks and global/partial
deadlocks, thus eventually leading to severe consequences for
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1 type statusManager struct {
2 podStatusesLock sync.Mutex
3 podStatusChannel chan bool
4 // ...
5 }
6

7 func(s *statusManager)Start() {
8 for i:=0; i<2;i++{
9 <-s.podStatusChannel

10 s.podStatusesLock.Lock()
11 // handle the pod status here
12 s.podStatusesLock.Unlock()
13 }
14 }
15

16 func(s *statusManager)SetPodStatus() {
17 s.podStatusesLock.Lock()
18 // send the pod status below
19 s.podStatusChannel <- true
20 s.podStatusesLock.Unlock()
21 }
22

23 func main(){
24 s := &statusManager{podStatusChannel:

make(chan bool)} // unbuffered
25 go s.Start() // G1
26 go s.SetPodStatus() // G2
27 go s.SetPodStatus() // G3
28 }

Fig. 1: A Mixed Deadlock Concurrency Bug in Kubernetes.
The Misuse of Channel with the Mutex Leads to the Deadlock.

end-users. Therefore, effective detection of channel-related
concurrency bugs in Go automatically is in urgent demand.

Unfortunately, existing testing techniques are ineffective
in discovering concurrency bugs in Go programs. We first
introduce a real example, and then elaborate on how existing
techniques are limited. Fig. 1 shows a deadlock bug from
Kubernetes [1] caused by the misuse of channel and lock (the
code is simplified for clarity). Specifically, it implements a
function to manage the status of Pods. The code first defines a
type (similar to structure/class in C/C++) of statusManager,
which contains two key methods, Start and SetPodStatus.
The two methods communicate through a shared unbuffered
channel (podStatusChannel) and mutex (podStatusLock)
(see such concurrency semantics in Section II-A).

The problem with the code is, with special concurrency
execution orders, i.e., interleaving, the thread G3 created at
L27 can hold the lock at L17 while waiting for the data sent



to the unbuffered channel at L19. However, the thread G1

created at L25 which can receive from the unbuffered channel
is blocking at L10 since it tries to acquire the lock at the
same time. Consequently, a deadlock happens, resulting in the
non-termination of both G1 and G3 as well as resource leaks
(see Section II-B for more detail).

For the conventional fuzzing techniques [4], [5], they are
limited since merely generating program inputs (e.g., input
from stdin, network or files) cannot trigger this bug. Instead,
uncovering the deadlock requires enforcing specific interleaving.
Several previous works have also proposed methods to search
the interleaving spaces to detect concurrency bugs (e.g., the
concurrency bug detection tools designed for other languages
such as C/C++ [6], [7], Java [8], [9] and C# [10]). However,
they cannot be directly applied to detect Go concurrency
bugs effectively. First, they are often designed to detect
memory access issues such as data races instead of channel-
related problems that we are concerned about. Second, they
cannot explore the interleaving of channel-related primitives
in Go. There are few testing approaches specifically designed
for Go targeting on the channel-related bugs. For instance,
GoAT [11] utilizes random delay injection before all channel-
related operations to explore diverse interleavings. However,
recent works [12], [13] show that the random strategy is
ineffective because it is hard to cover specific interleavings.
The state-of-the-art fuzzing approach for Go, GFuzz [14],
demonstrates promising performance by performing directional
scheduling via message reordering. However, it only explores
the interleavings based on the select statements, thus may
missing important concurrency bugs that are related to other
Go primitives.

To solve these problems, we propose a novel scheduling ap-
proach to explore interleavings for Go effectively. In particular,
it aims to achieve directional (cover specific interleavings
each time), general (supporting multiple primitives), and
fine-grained (at the operation-level) scheduling to detect
concurrency bugs for Go. However, effectively achieving such
a goal poses the following significant challenges.

First, systematically scheduling the orders of operations on
diverse primitives is non-trivial. GoAT [11] utilizes bounded
random delay injection [15] before all channel-related opera-
tions to explore diverse interleavings. With the specific focus on
the code element of select, GFuzz can explore the interleaving
space via reordering the concurrency-related operations inside
select effectively. However, the scheduling method of GFuzz
cannot be generalized to other primitives such as sync.Mutex.
To address the challenge of precisely scheduling the orders of
diverse concurrent primitives in Go, we integrate the idea of
exploring interleavings via conventional controlled concurrency
testing (e.g., [16], [17], [18], [19]) with Go’s unique features
and propose a new scheduling method driven by scheduling
chains. Scheduling chains are constrained by primitives and
generated based on certain heuristic rules. Different scheduling
chains indicate diverse directions to explore new interleavings.
The scheduling component instrumented into the concurrent
programs will force the execution to follow target directions.

Second, recognizing scheduling sites and generating effective
scheduling chains (see Section III-A) are challenging. With
certain domain knowledge, we can identify suitable scheduling
chains for small concurrent programs efficiently, but it is
impractical for large-scale open-source programs such as k8s
and etcd. Exploring exhaustively is infeasible for two main
reasons. First, the number of interleavings among different
primitives can increase exponentially with the increase of
primitive operations. Second, the interleavings contain a high
degree of duplication, and therefore exploring them exhaustively
can waste time and resources, thus being ineffective [12], [13],
[20]. To address such a challenge, we propose a novel feedback-
guided testing approach to generate effective scheduling chains.
The insight of scheduling chain generation is to learn from
both the valueless interleavings and the opportunity of finding
new interleavings from existing execution histories. Once
the knowledge has been gained, we utilize several primitive-
constrained heuristics to infer and explore new interleavings.

We implement our idea as a tool, GoPie, which can achieve
effective concurrency testing for Go via Primitive-constrained
Interleaving Exploration. We performed experiments on the
Go-specific concurrency benchmark, GoBench [1], as well as
well-known real-world open-source Go projects. Via extensive
evaluations, we found that GoPie is effective and scalable,
which can detect more types of concurrency bugs on the
GoBench than the existing state-of-the-art baselines. Besides,
it has identified 11 unique previous unknown bugs in the open-
source projects, 9 of them have been confirmed and 7 of them
have been fixed. In addition, the ablation study shows that each
component of our design in GoPie contributes significantly
to its promising performance.

In summary, the main contributions of this paper are:
• Originality: We provide a new method that can perform

directional, general, and fine-grained scheduling supporting
multiple primitives for Go concurrency bug detection.

• Effectiveness: We conducted extensive experiments on the
benchmark, GoBench, as well as large-scale open-source
projects. The results show that our approach is effective and
can outperform the state-of-the-art baselines.

• Usefulness: Our tool has uncovered 19 previously unknown
blocking instances in large-scale open source projects. We
filed such blockings as 11 unique bug reports, among which
9 have been confirmed and 7 have been fixed.

• Artifact: We implemented our tool as GoPie. The tool as
well as the experimental data is available at https://github.
com/CGCL-codes/GoPie to facilitate future studies.

II. BACKGROUND

A. Concurrency Primitives of Golang

In Go, concurrency primitives are language features that
enable concurrent programming. The following describes some
of the most commonly used concurrency primitives in Go [21]:

Goroutines: Goroutines, or routines, are lightweight threads
that are used to enable concurrent execution of code in Go.
Unlike threads in other languages, goroutines are not mapped to

https://github.com/CGCL-codes/GoPie
https://github.com/CGCL-codes/GoPie


operating system threads, which makes them more efficient and
lightweight. Goroutines can be created easily by the keyword
go and can be used to perform concurrent tasks, such as I/O-
bound or CPU-bound tasks.

Channels: In the Go programming language, channels are a
fundamental construct for communication and synchronization
between goroutines. A channel is essentially a typed conduit
through which values of a particular type can be sent and
received between goroutines. Channels are created using the
built-in make function, which takes a type as an argument
and returns a channel of that type (ch := make(chan int,
buffer size)). The <- operator is used to send and receive
values through a channel. For example, ch <- 42 send an inte-
ger to ch and x := <-ch will receive it from the same channel.
In addition to default unbuffered channels (buffer size is
0), which block until both the sender and receiver are ready,
Go also supports buffered channels. Buffered channels have a
fixed capacity, and sending to a buffered channel blocks only
when the buffer is full while receiving from a buffered channel
blocks only when the buffer is empty.

Select: Select is a concurrency construct that enables a
goroutine to select between multiple channels and wait for
the availability of a specific channel. This can be useful in
scenarios where a goroutine needs to wait for the completion
of a specific task, but can also handle other tasks at the same
time if necessary.

Locks: Locks are used to provide mutual exclusion in con-
current programs. In Go, there are two types of locks: mutual
exclusion locks i.e., Mutex and read-write locks i.e., RWMutex.
Mutex is used to ensure that only one goroutine can execute
a specific section of code at a time, while RWMutex allows
goroutines to concurrently access for read-only operations,
whereas write operations require exclusive access.

There are also other concurrency-related primitives such
as WaitGroup and Condition Variable. These concurrency
primitives can be used in combination by developers to build
high-performance, concurrent Go programs.

B. Concurrency Bugs in Go

Recent work has shown that although channel is a good
design, using channels does not eliminate concurrency bugs,
and the popularity of channels has also led to a significant
proportion of concurrency issues related to channels [3].
Specifically, a recent study shows that among all blocking bugs,
channel-related ones take the majority proportion (41/68) [1].
Consequently, in this paper, we mainly focus on channel-related
bugs. For example, channel-related runtime errors such as
sending to a closed channel, communication bugs such as
deadlock caused by cross-routine communication via channels,
and mixed deadlocks such as the misuse of channels collectively
with other concurrency primitives like locks.

We take the bug in Fig. 1 as an example for illustration.
Note that the channel is unbuffered since it is created by
calling make(chan bool). The second parameter, the buffer
length of the channel, is omitted and defaults to 0, which means
that the sending and receiving of the channel are synchronized

TABLE I: Primitives and Operations Supported by GoPie.
Primitive Operation Description
routine - start a new thread

mutex Lock acquire the lock
Unlock release the lock

rwmutex

Lock acquire write lock
Unlock release write lock
RLock acquire read lock
RUlock release read lock

channel
Send send a message to the channel
Recv receive a message from the channel
Close close the channel

(see Section II-A). For clarity, we use the term chan to refer
to the variable s.podStatusChannel, and the term mutex
to refer to the variable s.podStatusesLock in this example.
Additionally, we denote the operation at line x as Lx.

A deadlock occurs when enforcing the following execution
orders (i.e., interleaving):

• G1 executes up to L9. At the same time, G2 acquires the
lock at L17, and then executes up to L19.

• G1 and G2 synchronise, with G2 sending a message and
G1 receiving it. Then G2 releases the lock at L20.

• G1 is now about to execute L10. However, G3 executes
up to L17, which acquires the lock first.

• Then G3 is blocked at L19. As the channel is unbuffered,
G3 will block here until G1 is ready to receive from the
channel (L9).

Now there is a deadlock, since G1 is trying to acquire the lock
at L10 which is held by G3. At the same time, G3 is waiting
for G1 to execute L9 in the second loop.

III. APPROACH

In this Section, we introduce our proposed approach GoPie.

A. Preliminaries

Besides considering the Go-specific primitives (i.e., channel,
goroutine), we also include several traditional primitives
(e.g., locks) for the following reasons. First, as previously
mentioned, mixed deadlocks caused by the misuse of channels
and locks are also common in Go. Second, we aim to show
that our approach is general and can be easily applied to
other concurrency primitives. Table I shows the concurrency
primitives and the corresponding supported operations.

Fig. 2 shows the overview of GoPie. Specifically, it takes
the Go source code and the associated inputs/unit tests as inputs
and outputs potential concurrency bugs. GoPie takes several
steps to explore interleavings of the inputted Go programs. First,
it initializes the scheduling chain based on the inputs, which
is utilized to drive the process of order control. GoPie will
collect feedback, including constraints and interleavings, to
further assist interleaving mutation, which can generate new
interesting chains to augment the previous ones. The following
introduces the details of each step of GoPie.

To formalize our idea, we first define the primitive-oriented
operation, denoted as l : ⟨r, p, o⟩, to record an operation
execution in a concurrent program. Specifically, l is the label,
r denotes the concerned goroutine, p represents the primitive



Fig. 2: Overview of GoPie.

(e.g., channel and mutex), and o denotes the operation. For
example, G2 acquiring the lock at L17 in Fig. 1 can be denoted
as ⟨G2,mutex, L17⟩. The o can be determined statically during
instrumentation while r and p are determined dynamically for
the determination is non-trivial via static analysis. To avoid
confusion, we use the term primitives to denote object-like
primitives such as channels and locks. Meanwhile, we refer to
the special primitive of goroutine as routine.

Based on it, we further define an important concept, schedul-
ing chain (SC), which is used in this study as follows:

SC : {⟨r1, p1, o1⟩..., ⟨ri, pi, oi⟩, ..., ⟨rn, pn, on⟩
| ri ̸= ri+1, 1 ≤ i ≤ n− 1}

(1)

Each triple in a SC refers to an operation execution of a
concurrency primitive. The whole chain stands for the order in
which these concurrency-related operations should occur. For
example, in Fig. 1, the interleaving that caused blocking requir-
ing G3 to execute L17 before G1 executing L10 at the third step,
can be represented as {⟨G3,mutex, L17⟩, ⟨G1,mutex, L10⟩}.

To ensure that the interleaving is correctly scheduled, SC
mandates that two consecutive triples in a chain belong to
different threads (i.e., ri ̸= ri+1). Such a constraint is also
guaranteed at the phase of mutation (see Section III-D). The
scheduling chain plays a critical role in driving the order control
process to perform directional scheduling (trying to cover the
target specified interleavings each time, see Section III-B), and
enabling the mutator to be effective even without the modeling
of concurrency mechanisms.

B. Order Control

Go-specific testing tool, GFuzz [14], reorders the operations
of different channels in the same select statements, which
is achieved by controlling the program to prioritize the
execution of a specific case branch in the select statement.
Unfortunately, GFuzz only schedules the operations in the
same select statement, which is a non-trivial limitation (see
our evaluation in Section IV for more details). In this study,
we propose a more general scheduling method on diverse
concurrency primitives and operations, which can further serve
for our interleaving exploration as introduced in Section III-D,
the scheduling chain. Our scheduling aims to enforce the
program to cover the target interleavings as specified by the
scheduling chains without affecting the original program logic.
To achieve such a goal, GoPie instruments general controlling

Algorithm 1: General Stub around Concurrency Operations

1 Data: active set, wait queue← ParseSchedChain()
Input: the unique operation op next to the stub.
Output: the result of scheduling res, initialized to NULL.
/* Bailing Out */

2 if op /∈ active set then
3 ExecuteOperation(op) ;
4 res← StubNotActive ;

/* Stub Before Executing op */
5 while res ̸= NULL and op ̸= GetF irst(wait queue) do
6 if IsT imeout() then
7 res← FailedBecauseT imeout ;
8 break ;

9 if IsCancelled() then
10 res← FailedBecauseCancelled ;
11 break ;

12 TransitorySleep() ;

/* Executing op */
13 ExecuteOperation(op) ;
/* Stub After Executing op */

14 Dequeue(wait queue, op) ;
15 return res == NULL ? Success : res

stubs around each concurrency operation of various primitives
and orchestrates such stubs to work collectively. For instance,
the stubs will wrap L17, L19, L20 in function SetPodStatus
in Fig. 1 separately. Algorithm 1 shows the instrumented stub
around the concerned operations. For clarity, we use Ax to
denote the line number in the algorithm (e.g., A13 for the
execution of concerned operations). The algorithm contains
the following main steps.

First, initialization (A1). Before each controlled execution,
the corresponding scheduling chain will first be parsed into
two global structures, active set and wait queue respectively
to record the active stubs and the sequence.

Second, bailing out (A2 to A4). For those inactive stubs, the
algorithm ignores the stub code around the original operations,
thereby reducing the stubs’ overhead as much as possible.

Third, roll polling (A5 to A12). The stub blocks the execution
of the current routine by roll polling. The blocking takes effect
until the corresponding operation becomes the first operation in
the queue. In other words, the roll polling mechanism ensures
that each operation is executed in the order as specified in the
scheduling chain, with all the preceding operations completed
before the next one starts.

Finally, updating wait queue. After the original operation
has been executed, the wait queue will be updated at A14.
Consequently, all the cooperative stubs can recheck whether
the operation can now be executed at A5.

In the example as mentioned at Section III-A, if G1 is about
to execute L10 before G3 executing L17, G1 will be blocked
at the roll polling until G3 finishes its work and updates the
queue at A14 of Algorithm 1 in the stub.

The following points should be noted in Algorithm 1. First,
if the interleaving specified by the scheduling chain cannot be
achieved, the stub will give up blocking due to timeout (A8).



Second, when the main thread is about to terminate and the
blocking detector is about to work, all the blocking routines
will cancel the roll polling (A11) to avoid blocking on these
stubs, which may cause false positives. Lastly, the scheduling
results will be collected and used as runtime feedback.

C. Feedback Collection

GoPie collects runtime information as feedback to guide
the exploration of interleavings instead of merely measuring
the effect of scheduling. In particular, GoPie learns from
the interleaving of previous executions to infer new potential
interleavings (see Section III-D).

Building on recent advancements in static analysis for
Go [22], [23] and the edge coverage achieved through conven-
tional fuzzing, we propose a novel runtime feedback mechanism
for interleavings. Specifically designed to aid the exploration
of Go-specific concurrent primitives, we denote this new
mechanism as CPOP (Concurrency Primitive Operation Pair).
CPOP refers to the execution order of concurrency-related

operations, which can be defined as a pair of operations
(i.e., ⟨op1, op2⟩), where the operation is defined in Section III-A.
During interleaving mutation, both the interleavings inside the
same routine and those among different routines are important.
Therefore, we record two types of CPOP generated by a single
execution: interleaving pairs within the same routine (denoted
as CPOP1) and interleaving pairs among different routines
(denoted as CPOP2). The following introduces the details.

CPOP1, whose operations are from the same routine, is sim-
ilar to the traditional edge coverage with limited statements con-
cerned (i.e., those concerned primitives). However, in the con-
current scenario, CPOP1 is not only affected by the program
inputs but also related to the interleaving of routines. For exam-
ple, as shown in Fig. 1, {⟨G2,mutex, L17⟩, ⟨G2, chan, L19⟩}
belongs to CPOP1 concerning G2.

CPOP2, whose operations are in different routines but have
the same primitive, is used to measure the interleavings among
different routines. In this case, we use primitives as a constraint,
as they provide a clear and direct relationship between two
operations. For instance, in the example as shown in Fig. 1,
{⟨G3,mutex, L20⟩, ⟨G1,mutex, L10⟩} belongs to CPOP2

from G3 to G1. Furthermore, the connection between different
primitives is also considered subsequently in Section III-D.

Both CPOP1 and CPOP2 are important to aid the process
of interleaving mutation.

D. Interleaving Mutator

We have introduced how to perform scheduling as discussed
above while there is another key question, that is what to
schedule. In this Section, we introduce how GoPie performs
mutation to generate more valuable scheduling chains guided by
the feedback collected in Section III-C. The insight of GoPie’s
mutation strategy is to infer potential useful scheduling chains
based on previous knowledge, the effectiveness of which will
further be dynamically confirmed via specific order control
as introduced in Section III-B. During the loop between new
potential interleavings inferred and the interesting interleavings

confirmed, the concurrency program is explored by diverse
interleavings and concurrency bugs can be triggered at the
same time. However, there are plenty of different primitives
and operations, but not all of them are valuable to be scheduled
for the sake of both efficiency and effectiveness. The following
introduces our strategy to infer new potential interleavings
during interleaving mutation.

1) Preliminary Selection: In Go, routine switching only
occurs at locations where blocking is possible, such as channel
operations, locks, etc. First, as described in Algorithm 1, we
only consider the concurrency-related locations as the possible
scheduling sites and perform instrumentation around such
operations during static analysis. Other statements are ignored,
e.g., L11 and L18 in Fig. 1. Moreover, in order to avoid the
huge overheads of scheduling all possible sites in the program,
only those sites in the scheduling chain are activated in order
to control the execution (see active map in Section III-B).

2) Primitive-oriented Constraint: Recent static analysis
approaches for Go [22], [23], [24], have employed the strategy
of dividing programs into smaller fragments to avoid the
path explosion problem in concurrent scenarios. In particular,
these techniques have introduced several rules to determine
whether two operations are related and then categorize unrelated
primitives into separate sets via static analysis. A localized
analysis is then conducted on each set. Inspired by this idea, we
propose to divide the interleaving space based on the involved
primitives and the routines they are related to. Specifically, we
design the following rules.

Rule1 : ∃c, c′, ⟨c, c′⟩ ∈ CPOP1 → c′ ∈ Rel1(c)

Rule2 : ∃c, c′, ⟨c, c′⟩ ∈ CPOP2 → c′ ∈ Rel2(c)

Rule3 : ∃c, c′, c′′, c′ ∈ Rel1(c), c
′′ ∈ Rel2(c

′) → c′′ ∈ Rel2(c)

Rule4 : ∃c, c′, c′′, c′ ∈ Rel2(c), c
′′ ∈ Rel2(c

′) → c′′ ∈ Rel2(c)

(2)

where Rel1/2(x) stands for the set in which the operations
of primitives are related to x. Rule 1 indicates that in one
execution, two operations executed consecutively in the same
routine are related. In other words, two operations that can
constitute a CPOP1 edge, are marked as CPOP1 related
(i.e., Rel1). Similarly, Rule 2 indicates that two operations
of the same primitive that execute consecutively in different
routines are related. That is, two operations that can constitute
a CPOP2 edge, are considered as CPOP2 related (i.e., Rel2).

Rule 3 and Rule 4 perform transitive inferences. Specifi-
cally, Rule 3 performs a different transitive inference from
Rel1 to Rel2. The main insight of Rule 3 is to explore
more cross-routine interleavings by sliding on the intra-
routine interleavings of each routine. For example, since
⟨G2,mutex, L20⟩ ∈ Rel1(⟨G2, chan, L19⟩) based on Rule 1
and ⟨G3,mutex, L17⟩ ∈ Rel2(⟨G2,mutex, L20⟩) based on
Rule 2, we can infer based on Rule 3 that ⟨G3, chan, L17⟩ ∈
Rel2(⟨G2,mutex, L19⟩). Rule 4 is straightforward, which
shows that the relationship inside a set of Rel2 is transitive. For
example, supposing c and c′, c′ and c′′ respectively operate
on the same primitive but in different routines, there is a
high possibility that c and c′′ are also located at different
routines and operate on the same primitive. By adopting the



fragment technique from static analysis and integrating it with
the primitive-constrained feedback, GoPie can effectively
partition program operations, thus minimizing the likelihood of
generating extraneous scheduling. In the simplified example as
shown in Fig. 1, all the concurrent operations operate on the
channel, and the mutex are related based on the above rules,
which can isolate them from other concurrent operations in
the original program that is not simplified.

3) Potential Interleaving Mutation: In this Section, we
introduce how to infer potential interleavings that were not
covered before based on the feedback gained from previous
executions. Specifically, GoPie learns whether a scheduling
chain should be further mutated from the following aspects:
1) whether the scheduling chain was actually scheduled. As
mentioned in Section III-B, GoPie can infer whether the
current chain indeed takes effect from the runtime feedback. If
not, GoPie will not mutate it as it is less likely to generate
new valid interleavings and trigger bugs. 2) whether timeout
occurs during testing. Some tests require a long-term execution
(e.g., over 7 minutes), which is inefficient and will cause huge
overheads. Therefore, we ignore such cases for the sake of
efficiency. For the remaining scheduling chains, GoPie adopts
the following four mutation operators in conjunction with the
learned knowledge, Rel, as introduced above.

1. Abridge: it removes an item from the SC (either from
head or tail) if there is more than one operation in it, which
helps GoPie to limit the length of an SC.

∃oi, oj , {oi, oi+1..., oj−1, oj} ∈ SC

→ {oi+1, ..., oj−1, oj}, {oi, oi+1..., oj−1} ∈ SC
(3)

2. Flip: it performs a reverse process on the SC to be
mutated. For example, if ⟨s1, s2⟩ is covered in the previous
scheduling, ⟨s2, s1⟩ is also valuable to take a try. In this case,
the flip operation works.

∃oi, oj , {..., oi, oj , ...} ∈ SC

→ {..., oj , oi, ...} ∈ SC
(4)

3. Substitute: it tries to replace an operation with another
one from the set of Rel1 (which can be found and collected
from feedback in previous executions). For example, if ⟨s1, s2⟩
is covered, GoPie tries to explore the interleaving of the
intra-routine predecessor and the succeeding operation of s2.

∃oj , oj ∈ Rel1(oi), {..., oi, ...} ∈ SC

→ {..., oj , ...} ∈ SC
(5)

4. Augment: it tries to increase the length of SC by adding
another operation from the set of Rel2 to its tail, which aims
to explore those effective interleavings in a further step.

∃oj , oj ∈ Rel2(oi), {..., oi} ∈ SC

→ {..., oi, oj} ∈ SC
(6)

For better understanding, we provide an example of mu-
tating an existing interleaving to trigger the bug in Fig. 1.
Fig. 3 shows a normal execution and buggy execution of
the example. The key interleavings to trigger this deadlock
are denoted as the red edges in the figure. Specifically, the
deadlock bug can be triggered by the scheduling chain of
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Fig. 3: Different Interleavings of Normal and Buggy Executions
for the Example as Shown in Fig. 1.

TABLE II: Interleavings Collected during the Normal Execution
of the Example in Fig. 1, where stepx Denotes that the CPOP
is Utilized in which Mutation Step as Shown in Table III.

Type ID CPOP1 (Rel1)

G1

1 ⟨⟨G1, chan, L9⟩, ⟨G1,mutex, L10⟩⟩
2 ⟨⟨G1,mutex, L10⟩, ⟨G1,mutex, L12⟩⟩Step2,Step5

3 ⟨⟨G1,mutex, L12⟩, ⟨G1, chan, L9⟩⟩

G2
4 ⟨⟨G2,mutex, L17⟩, ⟨G2, chan, L19⟩⟩
5 ⟨⟨G2, chan, L19⟩, ⟨G2,mutex, L20⟩⟩Step1

G3
6 ⟨⟨G3,mutex, L17⟩, ⟨G3, chan, L19⟩⟩
7 ⟨⟨G3, chan, L19⟩, ⟨G3,mutex, L20⟩⟩

CPOP2 (Rel2)

chan
8 ⟨⟨G1, chan, L9⟩, ⟨G2, chan, L19⟩⟩
9 ⟨⟨G2, chan, L19⟩, ⟨G1, chan, L9⟩⟩

10 ⟨⟨G1, chan, L9⟩, ⟨G3 : chan, L19⟩⟩

mutex
11 ⟨⟨G2,mutex, L20⟩, ⟨G1,mutex, L10⟩⟩Initial

12 ⟨⟨G1,mutex, L12⟩, ⟨G3,mutex, L17⟩⟩Step3

13 ⟨⟨G3,mutex, L20⟩, ⟨G1 : mutex, L10⟩⟩

{⟨G2, chan, L19⟩, ⟨G3,mutex, L17⟩, ⟨G1,mutex, L10⟩} (fol-
lowing the red edges in Fig. 3). Therefore, the goal of the
interleaving mutator is to infer such a triggering scheduling
chain. GoPie’s insight is to leverage the execution histories
to perform mutation. Table II shows some examples of the
execution histories, which can be collected during the testing
process. For instance, during the normal execution as shown
in Fig. 3, the execution of different primitive operations in G2

follows the orders of: ⟨G2,mutex, L17⟩, ⟨G2, chan, L19⟩ and
⟨G2,mutex, L20⟩ respectively, and thus can form two CPOP1

pairs as shown in Table II. Other pairs as shown in the table
can be similarly collected based on execution histories.

Table III shows the details of the mutation procedures
as adopted by GoPie to detect this bug. Specifically, in
this example, GoPie starts from the existing covered inter-
leaving, Initial:{⟨G2,mutex, L20⟩, ⟨G1,mutex, L10⟩}. For
clarity, we have already added some notations as sub-
scripts in Table II to denote that the pair will be used
in which mutation. For instance, in Step1, CPOP#5 is
utilized in the mutator of Substitute, thus resulting the chain
of {⟨G2, chan, L19⟩, ⟨G1,mutex, L10⟩}. After a sequence of
further mutations of Substitute, Abridge, Flip and Substitute,



TABLE III: The Mutation Steps of GoPie for the Example.
Step Operator The Generated Scheduling Chain

Initial - {⟨G2,mutex, L20⟩, ⟨G1,mutex, L10⟩}
Step1 Substitute {⟨G2, chan, L19⟩, ⟨G1,mutex, L10⟩}
Step2 Substitute {⟨G2, chan, L19⟩, ⟨G1,mutex, L12⟩}
Step3 Abridge {⟨G2, chan, L19⟩, ⟨G1,mutex, L12⟩, ⟨G3,mutex, L17⟩}
Step4 Flip {⟨G2, chan, L19⟩, ⟨G3,mutex, L17⟩, ⟨G1,mutex, L12⟩}
Step5 Substitute {⟨G2, chan, L19⟩, ⟨G3,mutex, L17⟩, ⟨G1,mutex, L10⟩}

the result of Step5 can generate the target bug-triggering
scheduling chain, and thus the bug can be detected by GoPie.

For the sake of clarity, we demonstrate the steps following
the order to trigger the bug. In the actual implementation, the
order of testing those potential interleavings is randomized
(to avoid getting caught in localized search space) [25]. This
means that the process of discovering the bug will be more
convoluted, and thus appropriate guidance is necessary.

E. Concurrency Bug Detection

As the Go runtime can only detect global deadlocks (i.e., all
routines are deadlock) and runtime errors [26], GoPie uses
an additional detector named Goleak [27] to gain the ability to
detect partial blocking. Goleak can be used to detect if there
is any goroutine that has not been terminated when the main
routine is about to exit. Specifically, GoPie starts a timer at the
beginning of each execution, and the leak checking is performed
when either the execution is about to terminate or the timer
is timeout. GoPie then invokes the API of goleak which will
perform blocking checks, to ensure all runnable goroutines have
sufficient time to finish their task and quit normally. Finally, if
there are still routines remained, GoPie reports a warning of
the blocking situation. Before performing the leak checking,
a cancel signal will be broadcasted to all goroutines to avoid
false positives caused by order control (see Section III-B).
GoPie are expected to output the location of blockings,

the scheduling chain, and the logs of program execution.
For example, the report of the bug in Fig. 3 will include
⟨G1,mutex, L10⟩, ⟨G3, channel, L19⟩ as the blocking loca-
tion, {⟨G2, chan, L19⟩, ⟨G3,mutex, L17⟩, ⟨G1,mutex, L10⟩}
as the key interleaving and logs produced by the tested program.
We utilize this information to provide explanations for the
occurrence of blockings, as well as recommendations for
resolving them. Eventually, we report the results of our analysis,
the location of the blocking, and the possible fixes to the
developer via pull requests.

To avoid bothering developers with too many imprecise bug
reports and alleviating their workload, we further manually
analyzed all the blockings detected by GoPie before filing
bug reports. There are two main kinds of blocking instances
that have been excluded from reporting. First, there are a
few benign blockings detected in practice. These blockings
are true positives but are acceptable to developers. The
information of such blockings can often be found in the
comments of code or Github issues [28]. GoPie employs
a short whitelist of such expected leaked goroutines to filter
them out since the developers have already explained that they
are acceptable. Second, there are few false positives caused

by the overhead theoretically, which require a manual review.
Due to efficiency considerations, we cannot afford to wait
indefinitely for goroutines to complete their execution. For
instance, if a goroutine calls time.Sleep() for an extended period
and continues to obstruct after the main routine has terminated,
it will be identified as blocked.
GoPie has identified 19 instances of blocking after filtering,

as detailed in Section IV-B. We have merged those similar
blocking instances into one bug report. Ultimately, we have
submitted a total of 11 reports to developers, some of which
contain multiple instances of blocking.

IV. EMPIRICAL EVALUATION

We implement GoPie based on Golang. The instrumentation
is achieved based on the Token package and AST package [29]
and the concurrency operation trace is implemented by instru-
menting the runtime of Golang 1.19. Besides, We also reuse
the source code of goleak to detect partial blocking bugs. Our
implementation contains 7,163 lines of Go source code and
Shell scripts. All our experiments are performed on a server
with Intel(R) Xeon(R) Gold 6248R CPU and 128GB RAM.

To evaluate the effectiveness and usefulness of GoPie, we
aim to answer the following three questions:

• RQ1-Effectiveness: How effective is GoPie in bug
detection on the benchmark?

• RQ2-Usefulness: Can GoPie detect real bugs that have
not been exposed?

• RQ3-Ablation Study: How does each component of
GoPie contribute to its effectiveness?

A. RQ1: Effectiveness

1) Methodology: In this RQ, we evaluate GoPie’s effective-
ness in terms of its capability to detect existing Go concurrency
bugs. We select GFuzz [14] as our baseline since it is the
present state-of-the-art dynamic concurrency testing tool for
the Go concurrency bug.

In particular, we evaluate it on the benchmark dataset
GoBench [1]. GoBench is designed to assist researchers in
comprehending concurrency bugs in Go and fairly comparing
them among different detection tools. There are 82 real bugs
from 9 popular open-source applications (GoReal) and 103
bug kernels (GoKer) in GoBench. For each real-world bug in
GoReal, GoKer has extracted and simplified the bug-relevant
code while preserving the bug-inducing logic, including the
root cause and the triggering interleavings (and thus denoted as
bug kernels). We use the blocking bug kernels in GoKer (68
bug kernels extracted from 40 real-world bugs) for evaluation in
this RQ since the remaining ones are mainly data race related,
which is out of the scope of this study. We only evaluate
GoPie and GFuzz on GoKer in this RQ since we failed to run
GFuzz on the dockers of GoReal as provided on the official
page. Besides, both GoPie and GFuzz utilize the unit tests
associated with the projects as the testing entry, and thus we
also utilize the unit test as a baseline to examine whether the
bugs in GoKer can be easily detected by the repeating execution
of unit tests without scheduling as adopted by GoPie.



TABLE IV: The Effectiveness of GoPie on GoBench. The
column of Bugs is the number of bug kernels in each project,
and select, opchan, oplock stand for the number of select
statements, channel related statements outside the scope of
select, as well as the lock-related statements respectively.

Benchmark Information Dynamic Tools
Project Bugs select opchan oplock unit test GFuzz GoPie

cockroach 18 11 28 18 7 2 18
etcd 9 4 30 20 4 1 8
grpc 7 6 27 12 1 4 7
hugo 2 1 2 2 2 0 1
istio 3 5 11 5 1 2 3
kubernetes 13 14 47 39 3 4 13
moby 13 9 31 19 2 5 13
serving 1 1 8 3 0 0 1
syncthing 2 2 3 2 2 0 2
Total 68 53 187 120 22 18 66

TABLE V: The Effectiveness of GoPie on Channel-related
Bugs. Total denotes the number of bugs in each root cause.
CV: Condition Variable; C: Context; L: Lock; W: WaitGroup

Benchmark Information Dynamic Tools
Root Cause Total select opchan oplock unit test GFuzz GoPie

Channel 17 20 61 9 6 9 17
Channel & CV 2 8 11 7 1 1 2
Channel & C 7 9 26 2 0 4 7
Channel & L 13 9 63 42 3 4 13
Channel & W 2 2 6 7 2 0 2
Total 41 48 167 67 12 18 41

For GFuzz, we use the default fuzzing configurations as
adjusted by the authors and we run GoPie and the baselines
for 12 hours with the same number of threads.

2) Result: Table IV shows the evaluation results. In total,
GoPie successfully conducted testing on 67 of the 68 bug
kernels and detected 66 of them (98.51%), while the baseline
can only detect at most 18 out of the 65 successfully compiled
kernels (27.70%) among different configurations. The unit
tests in GoKer have detected 22 global deadlock bugs. To
gain a deeper understanding of the underlying reasons, we
conducted a lightweight static analysis to determine the number
of different primitives utilized in each project (as shown in
Table IV). Specifically, select denotes the number of select
statements, which is the main focus of GFuzz; opchan denotes
channel-related statements that are outside the scope of select
statements; and oplock denotes lock-related statements (all such
lock statements will not appear in any select statement). Both
opchan and oplock can be scheduled by GoPie while being
ignored by GFuzz. As we can see in Table IV, around 85%
(i.e., 1 - 53/(53+187+120)) of the operations cannot be handled
through select statements, thus being missed by GFuzz. On
the contrary, they can be effectively handled by GoPie since
it supports multiple concurrent primitives in Go.

To further demonstrate the effectiveness of GoPie, we
inspect the detection results only in terms of channel related
bugs (including channel-misued ones and those mixed with
other primitives, such as lock, context). Table V shows the
statistical results, which indicates that GoPie can detect all the
channe-related bugs in the benchmark, while the performance
of GFuzz is still unsatisfying. GFuzz failed to detect many of

TABLE VI: Open Source Projects in RQ2. The KLOC column
shows the number of code lines in each project; The Stars
column indicates the stars it has received on GitHub.

Name KLOC Description Stars
kubernetes 3,453 Container Scheduling and Management for Production 98K
prometheus 1,186 Monitoring system and time series database. 48K
etcd 181 Distributed reliable key-value store 43K
go-ethereum 368 Ethereum protocol written in Go 42K
tidb 476 Open-source, cloud-native, distributed database 34K
grpc-go 117 The Go language implementation of gRPC. 18K

them due to the inadequate scheduling method. On the contrary,
GoPie schedules more primitive sites and employs our novel
designs to effectively explore interleavings, thus resulting in
more bugs detected.

Answer to RQ1: GoPie is effective, which can detect most
of the concurrent bugs in GoKer of GoBench. It can also
outperform the state-of-the-art baseline significantly.

B. RQ2: Usefulness

1) Methodology: In this RQ, we evaluate GoPie’s useful-
ness in examining whether it can detect real bugs in large
open-source projects that are previously unknown. Specifically,
we run GoPie on the latest version of the projects as shown
in Table VI that are used in previous works [14], [23]. We
select these projects for the following reasons: First, projects
in this benchmark are the most widely used ones by existing
studies and they have also employed lots of Go concurrency
primitives. Second, existing studies [14], [22], [23] have already
sufficiently tested these projects, and thus it is also more
challenging to discover new bugs. Therefore, the detection of
new bugs can enhance the usefulness of our approach. Similar
to GFuzz, GoPie utilizes all the unit tests in the projects as
the fuzzing entry, and each project is tested for 12 hours.

For those bugs GoPie detected, we also try to examine
whether GFuzz can detect them. Besides, we also evaluate the
reported bugs by executing the unit test provided in the projects
with the same bug detector, GoLeak, in our implementation
(see Section III-E), to check out whether these bugs can also
be detected by the approach without scheduling.

2) Result: In total, GoPie has detected 19 concurrency-
blocking instances in four out of the six selected projects. We
have checked all the reports manually and finally filed 11 bug
reports to the maintainers with 9 of them being confirmed.
We only filed 11 bug reports since that for several blockings,
although they are discovered from different entries (unit test),
they are duplicated for having the same root cause. Therefore,
we submit them collectively in one report. We have also helped
to fix 7 out of the 9 confirmed bugs by crafting patches and
making pull requests. Table VII shows all the reported unique
concurrency bugs. As we can see, both merely considering
the unit tests without scheduling and GFuzz cannot detect
any of the bugs. There are two main reasons for GFuzz’s
ineffectiveness. First, some bugs are detected under diverse
concurrent primitives that are out of the scope of GFuzz.
Second, GFuzz failed to compile the latest versions of certain



TABLE VII: Bug Reports Filed by GoPie. ‘-’ indicates that
the issue or pull request is still waiting for responses.

Project Bug
Status Baseline

reported confirmed fixed GoLeak GFuzz

grpc
grpc 6190 [30] ! ! ! % %

grpc 6174 [31] ! ! ! % %

grpc 6172 [32] ! ! ! % %

etcd
etcd 15785 [33] ! ! ! % %

etcd 15675 [34] ! ! ! % %

etcd 15723 [35] ! - - % %

kubernetes
k8s 117517 [36] ! ! - % %

k8s 117534 [37] ! ! ! % %

k8s 114071 [38] ! ! ! % %

eth
eth 27675 [39] ! ! - % %

eth 27110 [40] ! - - % %
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Fig. 4: A Previously Unknown Concurrency Bug in
etcd (i.e., etcd 15675) Detected by GoPie.

projects due to the new language features used in such projects
even though we have followed the guidance and fuzzing
strategies as shown on the official page of GFuzz.

3) Case Study: Fig. 4 shows a previously unknown bug
in project etcd detected by GoPie (i.e., etcd 15675), which
is caused by the wrong assumption of execution orders. In
this bug, several routines (message provider routines) share
one channel to send messages to another routine (message
handler routine). The handler routine processes the message
with a fixed sequence since the developers expect the message
provider routines to send messages following the same sequence
as how the handler routines process the messages. The issue
here is that the sequence of message arrival is not guaranteed
but can be affected by time delay caused by time.After or
computation load. It works normally for most cases but can
lead to unexpected errors in certain situations. Unfortunately,
the buggy triggering case is hard to cover by random delay
injection or insufficient interleaving exploration.
GoPie detected the hidden bug during interleaving explo-

ration via controlled scheduling instead of injecting random
delay. We reported it and made a pull request to fix it by
using separate channels to handle the messages from different
routines, which is confirmed and approved by the maintainers.

Answer to RQ2: GoPie is useful, which can detect
previous unknown concurrent bugs for large-scale Go
projects that cannot be detected by the existing baselines.

C. RQ3: Ablation Study

1) Methodology: In this RQ, we examine the contribution
of the major components of GoPie, including the feedback
guidance and interleaving mutation. In particular, we disable
one component each time and perform fuzzing for 48 hours to
compare GoPie’s performance. The two designed variants are
GoPie-FB, and GoPie-Mu, which denote GoPie without
feedback guidance and without interleaving mutation respec-
tively. GoPie-FB performs interleaving mutation without
the primitive constraints learned from feedback and existing
covered interleavings. GoPie-Mu will always use an empty
chain, and do not perform scheduling during testing.

Since one important metric we compare is the number of
detected blockings and the unique bugs, we perform the ablation
study on all the packages of the projects used in RQ2 that have
bugs detected by GoPie (eight different packages in total).
Be noted that we do not perform fuzzing on the whole project
for the sake of efficiency.

Besides the bug-finding ability, we also evaluate from
other aspects in order to understand the behind effectiveness,
including concurrency coverage, the number of unique effec-
tive scheduling chains, and the number of critical channel
states. First, for concurrency coverage, we use the coverage
feedback as defined in Section III-C since it can reflect
the interleavings between executions. Specifically, we use
the operation pairs executed continuously within the same
routine (CPOP1) and across different routines (CPOP2) to
investigate the interleavings. The higher the interleavings, the
more opportunities for triggering a concurrency bug. Second,
for the number of generated unique effective scheduling chains,
we can distinguish whether a scheduling chain is effective
based on the feedback (e.g., whether a chain performs correct
scheduling during execution). The larger the number, the more
effective the interleaving exploration process. Third, we also
consider the state of the channels since recent works have
noticed that in Go programs, only the channels in certain states
can blocking occurs [23], [24], [41]. For instance, if a channel
is closed, a new arrival send operation will cause a ‘send to
closed channel’ panic in the program, which will further lead
to a crash. GFuzz utilizes certain special states, such as channel
full, channel empty, and channel close as the feedback, and
considers them as critical states [14]. Consequently, we utilize
the number of such critical states as a metric since it can reflect
the likelihood of triggering channel-related bugs.

2) Result: Table VIII shows the results of blockings and
bugs detected. It shows that GoPie can detect a total of all
19 blockings in 11 unique bugs. However, without scheduling,
GoPie can only detect 3 out of the 11 unique bugs. Equipped
with scheduling but without the feedback (GoPie-FB), it only
achieved one more blocking without any new bug detected
compared to the group without scheduling (GoPie-Mu). The
performance reduction indicates that both the scheduling
and the feedback guidance contribute significantly to the
performance of GoPie.

Table IX shows the results in terms of the other metrics,



TABLE VIII: Bug Detection Results of GoPie and the Variants.
In X (Y): X refers to the number of blockings while Y refers
to the number of unique bugs. ‘-’ means no bug detected.
Package Blockings (Unique Bugs)
Group GoPie GoPie-FB GoPie-Mu
go-ethereum/console 5 (1) - -
go-ethereum/eth/fetcher 2 (1) 2 (1) 2 (1)
grpc-go/stats/opencensus 1 (1) - -
grpc-go/xds 2 (2) - -
etcd/server/etcdserver 1 (1) - -
etcd/tests/integration/snapshot 3 (1) 1 (1) -
etcd/tests/integration/proxy/grpcproxy 1 (1) - -
k8s.io/client go/tools/watch 4 (3) 1 (1) 1 (1)
Total 19 (11) 4 (3) 3 (3)

which can explain the behind effectiveness. We can observe
that GoPie achieves the optimum performance for most cases
while its performance is degraded either disabling the feedback
guidance or interleaving mutation. Specifically, with respect
to concurrent coverage, GoPie can cover 16,483 and 18,367
pairs for interleaving1 and interleaving2 respectively. However,
without feedback, the number has dropped by 6.2% and 6.4%
respectively; without interleaving mutation, the number has
dropped by 8.2% and 9.3% respectively. With respect to the
generated valid scheduling chain, the performance has been
degraded more significantly. In particular, GoPie can generate
over 10 times more valid scheduling chains compared with the
other two variants. Similar results have also been observed with
respect to the critical channel state. Such results demonstrate the
effectiveness of our feedback-driven scheduling in interleaving
exploration, which can explain the promising performance
achieved by GoPie.

Answer to RQ3: The major design of GoPie contributed
significantly to its performance. Specifically, performing
scheduling driven by execution feedback and interleaving
mutation is promising for detecting Go concurrency bugs.

V. DISCUSSION AND FUTURE WORK

This study is limited in the following aspects.
First, we only implement the scheduling on channel-related

and lock-related operations to demonstrate GoPie’s effective-
ness. However, there are other concurrency primitives such as
WaitGroup, and Cond. The misuse of these primitives can also
lead to concurrency bugs. Fortunately, our approach can easily
be applied to these primitives, and thus is potential to identify
more interleavings and more types of concurrency bugs.

Second, GoPie does not mutate the provided test case of
each program, and thus it will miss those interleavings that
require extra test cases to cover. There are many previous
works focus on test case generation such as input-driven
fuzzing [4], [5], [42] and unit test generation [43], [44], [45],
[46]. GoPie can be integrated with such techniques to further
enhance its effectiveness. It is also a promising direction worth
exploring in the future.

Third, there are both potential false positives and negatives
in GoPie. The implementation of GoPie made a trade-off

between efficiency and completeness, which can result in false
negatives. In particular, we set timeouts to the processes of
order control, and unit tests that execute over the time budget
will be abandoned. Besides, the length of scheduling chains is
also bounded, bugs that require many steps of scheduling to
be triggered are not guaranteed to be detected. As mentioned
in Section III-E, there are a few false positives caused by
the detector due to expected leaks and time limitations of
detection. The expected leaks can be filtered out by a short
project-specific whitelist (e.g., three in go-ethereum). We will
explore how to automate this process in the future. Besides,
runtime partial blocking detection [47] can also reduce the
false positives caused by Goleak. We plan to explore how to
integrate it with GoPie in the future.

Fourth, while our approach reduces the search space
as mentioned in Section III-D, the search space can still
be relatively large for some cases. To address this issue,
DPOR [48] recognizes and explores only the representatives of
equivalent interleavings, thus effectively reducing the number of
interleavings that need to be explored. Incorporating the DPOR
technique into our approach may yield better performance and
reduce the computational resources required for testing. We
are committed to exploring this possibility in the future and
improving the efficiency of our approach.

VI. RELATED WORK

A. Coverage-guide Testing

Coverage-guided testing is a popular software testing tech-
nique used to automatically generate and execute inputs to
identify bugs, vulnerabilities, and other issues in a program.
Tools such as AFL [49], libFuzzer [42], and honggfuzz [5]
are commonly used for this purpose. However, these tools are
limited when it comes to concurrency testing, primarily due
to the gap between coverage-guided fuzzing and concurrency
testing. Recent works [50], [51], [52], [53], [54] have im-
proved the coverage-guide fuzzing approach by incorporating a
concurrency-sensitive metric in place of the traditional coverage
metric. However, these approaches rely on random scheduling
techniques which can sometimes be ineffective, as highlighted
in recent studies [7], [12], [55], [56], [57].

There are also some approaches that focus on effectively
generating unit tests [43], [44], [45], [46]. Our approach differs
from the aforementioned approaches in that they focus on
generating effective concurrency test cases. Instead, we use a
set of predetermined test cases and aim to enhance the concur-
rency coverage by optimizing the scheduling of concurrency
execution orders. Therefore, our method is complementary to
those approaches and can be used in conjunction with them to
further improve the overall quality of concurrency testing.

B. Controlled Concurrency Testing

The field of data race detection has attracted extensive
research efforts [12], [17], [51], [54], [55], [58]. GoPie is
similar to previous techniques in terms of the aspects of
thread scheduling or controlled concurrency testing [7], [12],
[58], [55] as they all use the way to delay or schedule the



TABLE IX: The Performance of GoPie and the Variants. Interleaving1 and interleaving2 denotes the cross-routine and
intra-routine interleaving. ‘-’ means there is no successful scheduling chain generated. Critical Channel State includes those
status such as full, empty and closed of channels.

Package Interleaving1 Interleaving2 Valid Scheduling Chain Critical Channel State
Group GoPie GoPie-FB GoPie-Mu GoPie GoPie-FB GoPie-Mu GoPie GoPie-FB GoPie-Mu GoPie GoPie-FB GoPie-Mu

go-ethereum/console 7,792 7,586 6,080 13,380 9,488 8,543 10,982 1,345 - 168 145 141
go-ethereum/eth/fetcher 2,937 2,856 2,834 3,856 3,678 3,636 275 17 - 143 139 139

grpc-go/stats/opencensus 6,313 5,274 3,516 11,214 10,980 6,947 5,273 334 - 225 210 194
grpc-go/xds 650 274 277 796 505 507 7,024 - - 36 36 36

etcd/server/etcdserver 7,720 2,650 3,309 9,850 6,383 7,193 39,718 81 - 259 258 259
etcd/tests/integration/snapshot 65,915 65,872 65,904 71,409 71,239 71,075 188 24 - 421 412 415

etcd/tests/integration/proxy/grpcproxy 37,747 37,745 37,795 33,521 33,080 33,273 321 29 - 403 382 380
k8s.io/client go/tools/watch 2,792 1,441 1,375 2,911 2,159 2,140 6,678 5 - 116 116 116

threads to conduct interleaving exploration. However, these
techniques mainly focus on memory access, and try to trigger
bugs such as data races, which is not suitable for detect-
ing concurrency primitive-related bugs like communication
deadlock. For instance, CONZZER [7] is a tool designed
specifically for detecting concurrency bugs in C/C++ programs.
It utilizes context-sensitive call pairs and directed scheduling to
explore potential concurrent function calls and identify possible
concurrency issues. Our approach shares similar ideas with
CONZZER in terms of directed scheduling. The key difference
is our approach schedules on the operation level instead of
the function level. And we incorporate certain constraints on
Go concurrent primitives during mutation to skip unnecessary
schedulings, which is more efficient. In Section III-D, we
conduct a constraint to reduce the search space. Our approach
shares the same goal with the technique of partial order
reduction (POR) [20], [48]. However, while POR seeks to
identify and skip equivalent interleavings, we instead aim to
divide the events into separate sets to reduce the search space.

C. Go-specific Concurrency Bug Detection

Recent research on concurrency testing in Go has primarily
concentrated on static analysis techniques [22], [23], [24], [59],
[60], [61], [62], [63]. Despite their popularity, these static
analysis techniques have certain limitations. For instance, they
are prone to generating false positives and are not scalable for
testing large programs. Even the latest state-of-the-art method
Goat [23] has reported a high rate of failure, quitting on 70%
of real-world project evaluations, and detecting more than 30%
of false positives. Various dynamic bug detection tools are also
being used by industries for Go-specific concurrency issues.
For instance, Go comes with a built-in global deadlock detector
that reports errors when all the goroutines are blocked [64].
Moreover, go-deadlock [65] is another deadlock detector
that changes the package of locks to lock-sensitive ones.
Additionally, many renowned open-source Golang projects
have their own leak detectors, such as goleak [27] used by
Uber and leaktest used by cockroachdb [66]. Despite this, these
tools do not increase the probability of discovering new bugs
through scheduling. Go has its own fuzzing framework [67], but
like traditional fuzzing tools, it targets user input for mutation
rather than concurrent interleaving, so it cannot be applied to
concurrent testing scenarios.

Recently, some researchers have started to shift their focus
towards using scheduling methods for exploring hard-to-find
interleavings and uncovering Go-specific concurrency bugs. For
instance, GoAT [11] uses random delay injection to schedule
a concurrency program. However, recent studies [12], [13]
have identified that such exploration is often inefficient as
it frequently explores duplicate interleavings while missing
the hard-to-find ones. GFuzz [14] tailors the idea of message
reordering to directional control the execution orders of
channel operations inside select statements. However, it
lacks the ability to control other primitives such as lock and
WaitGroup, as well as channel operations outside select. In
contrast, GoPie improves upon these limitations through the
utilization of more generalized scheduling and more effective
interleaving exploring methods. Additionally, the coverage
feedback, ChOpPair in GFuzz, is mainly designed as a metric
to measure the scheduling effects while cannot be utilized to
infer new potential interleavings.

VII. CONCLUSION

This paper presents a novel dynamic testing technique
GoPie for detecting Go concurrency bugs via directional
primitive-constraint interleaving exploration. In particular,
GoPie proposes a general scheduling method for Go concur-
rency testing and an efficient interleaving exploration strategy
by learning from previous executions instead of exploring
exhaustively or via random delay injection. We have evaluated
GoPie on the Go-specific benchmark GoBench and six large-
scale open-source projects. Experimental results show that
GoPie significantly outperforms the baselines in terms of
the number of detected bugs on GoBench. Besides, it has
discovered 11 previously unknown unique concurrency bugs
that are missed by existing state-of-the-art tools.
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