
Fastbot2: Reusable Automated Model-based GUI Testing for
Android Enhanced by Reinforcement Learning

Zhengwei Lv
lvzhengwei.m@bytedance.com

Bytedance
Beijing, China

Chao Peng
pengchao.x@bytedance.com

Bytedance
Beijing, China

Zhao Zhang
zhangzhao.a@bytedance.com

Bytedance
Beijing, China

Ting Su
tsu@sei.ecnu.edu.cn

East China Normal University
Shanghai, China

Kai Liu
liukai.0914@bytedance.com

Bytedance
Beijing, China

Ping Yang
yangping.cser@bytedance.com

Bytedance
Beijing, China

ABSTRACT

In the industrial setting, mobile apps undergo frequent updates
to catch up with changing real-world requirements. It leads to
strong practical demands of continuous testing, i.e., obtaining quick
feedback on app quality during development. However, existing
automated GUI testing techniques fall short in this scenario as they
simply run an app version from scratch and do not reuse the knowl-
edge from previous testing runs to accelerate the testing cycle. To
fill this important gap, we introduce a reusable automated model-
based GUI testing technique. Our key insight is that the knowledge
of event-activity transitions from the previous testing runs, i.e., ex-
ecuting which events can reach which activities, is valuable for
guiding the follow-up testing runs to quickly cover major app func-
tionalities. To this end, we propose (1) a probabilistic model to mem-
orize and leverage this knowledge during testing, and (2) design
a model-based guided testing strategy (enhanced by a reinforce-
ment learning algorithm), to achieve faster-and-higher coverage
testing. We implemented our technique as an automated testing
tool named Fastbot2. Our evaluation on the two popular industrial
apps (with billions of user installations) from ByteDance, Douyin
and Toutiao, shows that Fastbot2 outperforms the state-of-the-art
testing tools (Monkey, Ape and Stoat) in both activity coverage
and fault detection in the context of continuous testing. To date,
Fastbot2 has been deployed in the CI pipeline at ByteDance for
nearly two years, and 50.8% of the developer-fixed crash bugs were
reported by Fastbot2, which significantly improves app quality.
Fastbot2 has been made publicly available to benefit the commu-
nity at: https://github.com/bytedance/Fastbot_Android. To date, it
has received 500+ stars on GitHub and been used by many app
vendors and individual developers to test their apps.

1 INTRODUCTION

Mobile apps have drastically increased in number over the recent
years [2]. However, low-quality apps are likely to be abandoned
after one use [7]. Thus, ensuring app quality is a crucial task for
keeping user loyalty and maintaining business success. To this end,
automated GUI testing has become an attractive and cost-effective
solution to achieving this task. Indeed, many automated GUI testing
tools have been developed in the last decade [3, 12, 13]. The typical
usage scenario of these tools is that, given an app, they are deployed
once for all to find potential crash bugs within a time budget.

However, the aforementioned scenario is far from the real in-
dustrial setting. In practice, an industrial app undergoes frequent
updates so as to catch up with the changing real-world require-
ments. For example, at ByteDance, we release the new updates of
our major apps on a weekly basis. As a result, continuous testing
becomes crucial to obtain quick feedback on app quality (e.g., do-
ing smoke testing) whenever a new internal version is available.
However, simply adopting existing GUI testing tools, although fea-
sible, is inefficient and ineffective. Because they simply rerun each
app version from scratch and do not leverage the knowledge from
previous testing runs to accelerate GUI testing in the current run.

To fill this important gap, we introduce a reusable automated GUI
testing technique. Our key idea is to leverage model-based testing
(MBT). Among existing testing solutions, MBT is recognized for
its unique model construction phase, which is ideal for storing
and leveraging the prior knowledge. However, we face two major
technical challenges in putting our idea into practice.

The first challenge is how to effectively store the knowledge from
the previous testing runs. Our key insight is that the knowledge
of event-activity transitions, i.e., executing which events can reach
which activities, is valuable for guiding the follow-up testing runs to
quickly cover app activities (corresponding to major app function-
alities). Thus, we propose a probabilistic model as the basis of MBT
to memorize such knowledge from each testing run. Specifically,
this model stores a set of event-activity transitions, each of which
records the historical probability of an event to reach an activity.
Moreover, to tackle the complexity of industrial apps, we introduce
a conception of hyper-event to represent the events in this model,
which is useful to balance the model scalability and accuracy.

The second challenge is how to effectively leverage the prior
knowledge to guide GUI testing. The classic MBT method requires
traversing the model to generate sequences of GUI events (i.e., GUI
tests). However, one prominent problem is that such GUI tests
are likely to be broken when executing on the tested app due to
the unawareness of the connectivity between different GUI events.
To overcome this issue, our key insight is to employ the proba-
bilistic model to achieve on-the-fly, guided model-based testing.
Specifically, the probabilistic model (which stores the knowledge of
event-activity transitions) provides one-step guidance about which
events on the current GUI page could be selected to quickly reach
those not-yet-covered activities in the current testing run. More-
over, to further improve performance, we develop a reinforcement

https://github.com/bytedance/Fastbot_Android

ASE 2022, 10 - 14 October, 2022, Michigan Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang

Fastbot2

Hyper-event
Abstractor

Valid-text Pool
APK Probabilistic

Model

Historical Data
(v1, v2, … , vn-1)

RL Agent

Q-Table
a2. Installation

a1. Valid-text Extraction

b1. GUI Info
b2. Available Events

a3. Probabilistic
Model Construction

b3. Algorithm Determination

b6. Rewards

b4. Event Execution

b5. Update Historical Data and Probabilistic Model

Activity Coverage

Crashes

vn

Figure 1: Fastbot2’s workflow in each testing run. The arrows denote different steps, which are annotated by “a1”, “b1”, etc.

learning algorithm to provide multi-step guidance (also informed by
the probabilistic model), which aims to reach those deep activities
requiring executing multiple sequential events.

We implemented our technique as an automated testing tool
named Fastbot2. Our evaluation on the two popular industrial
apps from ByteDance, Douyin1 and Toutiao2, shows that Fastbot2
outperforms the two state-of-the-art MBT tools, Stoat [11] and
Ape [6], and the random testing tool Monkey [5] in both activity
coverage and bug finding in the context of continuous testing. To
sum up, our work makes two major contributions: (1) We propose a
reusable automated model-based GUI testing technique enhanced
by reinforcement learning to satisfy the practical needs of continu-
ous testing, which has not been considered by prior work. (2) Our
implementation Fastbot2 outperforms the state-of-the-art. It has
also been successfully deployed in the CI pipeline at ByteDance and
received positive feedback on its ability of improving app quality.

2 FASTBOT2

Figure 1 shows the Fastbot2’s workflow. Fastbot2 takes as input a
given app version in the form of an APK file (the executable binary
of an app), and outputs the coverage report and found crashes.
Specifically, Fastbot2 includes two major phases for each testing
run. The first phase does setup before testing: decompiling the APK
file to gather the static text labels of widgets (Step “a1”), installing
the app on a pool of mobile devices (Step “a2”), and loading the
historical testing data if available from the previous testing runs to
populate the probabilistic model (Step “a3”, cf. Section 2.2.1).

The second phase does guided UI exploration (cf. Section 2.3).
Fastbot2 dumps the current GUI page from the tested app (Step
“b1”), identifies and abstracts the available hyper-events from the
current page (Step “b2”, cf. Section 2.2.2), selects a concrete UI event
on the current page which is likely to increase activity coverage
(Step “b3”), execute this UI event (Step “b4”) and updates the his-
torical testing data, the probabilistic model (Step “b5”) and the
reinforcement learning agent (Step “b6”). These steps (“b1”∼“b6”)
will be iteratively conducted until the time budget is used up.

2.1 An Illustrative Example

Figure 2(a) gives an illustrative example taken from Toutiao (we
simplified its GUI pages and workflow), a popular daily news app.
We will use this example to ease the exposition of our approach
in Sections 2.2 and 2.3. Specifically, in Toutiao, a user can view a

1Douyin: https://www.douyin.com/
2Toutiao: https://www.toutiao.com/

(c) Q-value Update

(a) App Under Test (Toutiao)

e1 e5 e7 e9 … an

reward1 reward5 reward7 rewardn

q1 q5 q7 qn

Title 1 (e1)

Remarks 1
(e3)

Back
(e4)

Author
(e5)

News
Content

(e6)

Profile Photo
(e7)

News 1 (e8)
Livestream

Video
(e9)

Activity 1
(Home)

Activity 2
(News Info)

Activity 3
(Author Homepage)

Activity 4
(Livestream)

News 2 (e8’)

News 3 (e8’’)

e1 q1

Q Table

e5 q5
e7 q7
an qn

Author 1 (e2)

(b) Probabilistic Model

e1
Activity 2

Activity 5

e2 Activity 3

e3
Activity 1

e4 Activity 1

Activity 5

60%

40%

100%

100%

90%

10%

e1
Activity 2

Activity 5

e2 Activity 3

e3
Activity 1

e4 Activity 1

Activity 5

63.6%

36.4%

100%

100%

90%

10%

e5 Activity 3
100%

Update

Title 2 (e1’)

Remarks 2
(e3’)

Author 2 (e2’)

News n (e8n)

…

M: Initial M’: After executing e1 and e5

Figure 2: Activity Transition Example from Toutiao App

number of news on its home screen (Activity 1), click the news
title (e.g., “Title 1”) to reach Activity 2 to view the detailed news
content, click the news author (“Author”) to view all the news from
this author on Activity 3 and watch the live video on Activity 4 if
available by clicking the profile photo.

2.2 Probabilistic Model and Hyper-events

2.2.1 Probabilistic Model. We propose a probabilistic model as
the basis of MBT to memorize the knowledge of event-activity
transitions from the previous testing runs. Specifically, this model
𝑀 is formally defined as a 3-tuple𝑀 = (E,A, 𝛿), where

• E is the set of hyper-events created from UI widgets.
• A is the set of activities of the app under test.
• 𝛿 is the transition function, i.e., E → P(A × [0, 1]). P
is a powerset function and each transition is of the form

Fastbot2: Reusable Automated Model-based GUI Testing for Android Enhanced by Reinforcement Learning ASE 2022, 10 - 14 October, 2022, Michigan

𝑒 → (𝐴, 𝑝), meaning that the probability of a hyper-event 𝑒
reaching an app activity 𝐴 is 𝑝 , where 𝑒 ∈ E and 𝐴 ∈ A.

The probabilistic model 𝑀 is constructed from historical explo-
ration data. The probability of reaching activity 𝐴𝑖 by executing
the hyper-event 𝑒 (denoted by 𝑃 (𝑒,𝐴𝑖)) is calculated by :

𝑃 (𝑒, 𝐴𝑖) =
𝑁 (𝑒,𝐴𝑖)
𝑁 (𝑒) (1)

where 𝑁 (𝑒,𝐴𝑖) denotes the number of times of 𝑒 reaching 𝐴𝑖 ,
and 𝑁 (𝑒) denotes the total execution times of 𝑒𝑖 in all the pre-
vious testing runs. If the hyper-event 𝑒 can reach 𝑘 activities (e.g.,
𝐴1, . . . , 𝐴𝑖 , . . . , 𝐴𝑘),

∑𝑘
𝑖=1 𝑃 (𝑒, 𝐴𝑖) = 1 holds.

Example. Figure 2(b) gives an example of the initial probabilistic
model (see the left part) loaded from previous testing runs before
starting the current testing run. For example, Activity 2 can be
reached by executing the hyper-event 𝑒1 on Activity 1, 𝑒1 can reach
Activity 2 and 5 with probability values 60% and 40%, respectively.

2.2.2 Hyper-events. We propose the concept of hyper-event to rep-
resent the events in the probabilisticmodel. A hyper-event is created
from each UI widget according to its properties. Specifically, we only
consider the following four properties of a widget: the activity
which the widget belongs to, the widget’s text3, resource-id,
and the supported action types (e.g., click, long click). In other
words, if some widgets have the same four properties, we assume
they have the similar functionality and only one hyper-event will be
created. We ignore all the other minor widget properties (e.g., a wid-
get’s type) when creating hyper-events with the aim of balancing
between model scalability and accuracy.
Example. In Figure 2(a), on Activity 1, Fastbot2 will create only
one hyper-event “e1” for the widgets named “Title 1” and “Title 2”
because these two widgets have the identical widget properties: the
same activity, the same empty text (“Title 1” and “Title 2” are the
texts dynamically loaded from the app server without static text
labels), the same resource-id, and the same click action type. In
this way, we will create three hyper-events, i.e., “e1” (representing
“Title 1” and “Title 2”), “e2” (representing “Author 1” and “Author
2”), “e3” (representing “Remarks 1” and “Remarks 2”), on Activity 1.

2.3 Model-based Guided UI Exploration

The key idea of Fastbot2 is to reuse the prior knowledge stored in
the probabilistic model to effectively guide GUI testing. To achieve
this, the key step is to decide which UI event on the current GUI
page should be selected so as to quickly increase activity coverage.
This step corresponds to Step “b3” in Figure 1. Specifically, given a
GUI page, Fastbot2 extracts the available hyper-events, and selects
the event4 to be executed based on the two synergistically combined
strategies: (1) model-based event selection (cf. Section 2.3.1), and (2)
learning-based event selection (cf. Section 2.3.2).

2.3.1 Model-based event selection. Model-based event selection
contains two modes, i.e., model expansion and model exploitation.

3Here, the text means the static text labels stored in the resource files of the APK file.
If the text is dynamically loaded from the app server, we treat its text as empty.
4After we decide which hyper-event should be selected, if the selected hyper-event
represents multiple UI widgets, we will randomly pick one UI widget to exercise.

Model expansion. If some hyper-events from the current GUI page
have not been included in the probabilistic model𝑀 , Fastbot2 will
activate this mode to randomly select one not-yet-executed hyper-
event. This situation may occur because the previous testing runs
may not cover all hyper-events or some new app features have
been added in the current tested app version. This mode can help
expand the model and prioritize exploring potentially new features.
Model exploitation. If all the hyper-events from the current GUI
page have been included in the probabilistic model 𝑀 , Fastbot2
will activate this mode to select an event with higher probability
to cover those not-yet-covered activities in the current testing run
(which were covered in the previous testing runs). LetA𝑡 be the set
of already covered activities in the current testing run and E𝑐 be
the set of hyper-events from the current GUI page, the expectation
of improving activity coverage by executing 𝑒𝑖 (𝑒𝑖 ∈ E𝑐) can be
computed as E(𝑒𝑖) =

∑
𝐴∉A𝑡

𝑃 (𝑒𝑖 , 𝐴), 0 ≤ 𝑖 ≤ |E𝑐 |.
Here, E(𝑒𝑖) represents the expectation value of probability that

those not-yet-covered activities in the current testing run will be
covered after the hyper-event 𝑒𝑖 is executed. The higher E(𝑒𝑖), the
more likely it is to improve activity coverage in the current testing
run. Thus, Fastbot2 in this mode selects the hyper-event 𝑒𝑖 by
probability 𝑃𝑀 (𝑒𝑖):

𝑃𝑀 (𝑒𝑖) = 𝑒𝑥𝑝 (
E(𝑒𝑖)
𝛼

) /
∑︁

𝑒𝑖 ∈E𝑐

𝑒𝑥𝑝 (
E(𝑒𝑖)
𝛼

) (2)

where, 𝛼 is a hyperparameter which adjusts the randomness of
this mode. This equation is adapted from the softmax formula. We
also require that 𝑒𝑖 should be selected no more than 𝐾 times to
ensure fairness. In practice, we set 𝛼 as 0.8 and 𝐾 as 1. By using the
probabilistic model as priori information, the model exploitation
mode can quickly improve activity coverage in a short time.
Example. In Figure 2(a), three hyper-events are available on Ac-
tivity 1. Since all these three events have been included in the
probabilistic model 𝑀 (see the left part of Figure 2(b)), Fastbot2
activates the model exploitation mode to select events. According
to𝑀 , event e1 and e2 are more likely to reach unexplored activities
(i.e., Activity 2, 3, 5), while event e3 has 90% probability to stay in
Activity 1. Thus, Fastbot2 is likely to select e1 or e2. Assume e1
is selected and then Activity 2 is covered. In Activity 2, event e4
(the back button) has 100% probability to return back to Activity 1,
while event e5 and e6 have not been included in 𝑀 . As this time,
Fastbot2 activates the model expansion mode and randomly se-
lects e5 or e6. Assume e5 is selected and then Activity 3 is covered.
Meanwhile,𝑀 is updated by adding e5→Activity 3 with probability
value 100% (see the right part of Figure 2(b)).

2.3.2 Learning-based event selection. However, the probabilistic
model can only express one-step guidance information. Fortunately,
reinforcement learning technique is able to spread one-step into
multiple-step guidance information.
Q-table expansion. The key component of the RL agent is the Q-
table, which contains the Q-values (which indicate the possibility of
executing each hyper-event to reach a new activity). During testing,
no matter which event selection strategy is used, the Q-value of
the selected hyper-event 𝑒𝑡 on the current GUI page, i.e., 𝑄 (𝑒𝑡), is

ASE 2022, 10 - 14 October, 2022, Michigan Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang

updated to 𝑄 (𝑒𝑡) + 𝛼 (𝐺𝑡,𝑡+𝑛 − 𝑄 (𝑒𝑡)), where 𝐺𝑡,𝑡+𝑛 is the n-step
cumulative reward calculated by an N-step Sarsa method [4]:

𝐺𝑡,𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + · · · + 𝛾𝑛𝑄 (𝑒𝑡+𝑛) (3)

Here, 𝛾 is the discount factor. 𝑟𝑡+1 is the immediate reward earned
after the event 𝑒𝑡 is executed, which is defined as

𝑟𝑡+1 =
E(𝑒𝑡)√︁
𝑁 (𝑒𝑡) + 1

+
𝑉√︁

𝑁 (𝐴𝑡) + 1
(4)

Here, 𝑁 (𝑒𝑡) denotes the number of times 𝑒𝑡 is executed,𝐴𝑡 denotes
the activity 𝑒𝑡 leads to, and 𝑁 (𝐴𝑡) denotes the number of times 𝐴𝑡
is visited so far in the current testing. 𝑉 represents the value of 𝐴𝑡
and is calculated using:

𝑉 = 𝑛ℎ + 0.5 ∗ 𝑛𝑐 +
∑︁

𝑒𝑖 ∈E𝑐

E(𝑒𝑖) (5)

Here, 𝑛ℎ is the number of hyper-events in the reached GUI page
but are not in the probabilistic model. Thus, executing these hyper-
events will likely touch new features. 𝑛𝑐 is the number of hyper-
events in the next GUI page and contained in the probabilistic model
but have not been executed in the current testing run.

∑
𝑒𝑖 ∈E𝑐

E(𝑒𝑖)
is the sum of expectation values of executing 𝑒𝑖 to improve activity
coverage, which is the same formula defined in model exploitation.
Q-table exploitation. A hyper-event is selected by probability 𝑃𝑄 :

𝑃𝑄 (𝑒𝑖) = 𝑒𝑥𝑝 (
𝑄 (𝑒𝑖)
𝛽

) /
∑︁

𝑒𝑖 ∈E𝑐

𝑒𝑥𝑝 (
𝑄 (𝑒𝑖)
𝛽

) (6)

where 𝛽 is the hyperparameter that adjust the randomness of the
strategy, which is set to 0.1 in our practice.
Example. In Figure 2(a), on Activity 2, e4 and e6 have not been
executed yet in the current testing run and e6 has not been included
in the model𝑀 . In this case, e1 (on Activity 1) will be given a higher
reward because e1 can lead to the interesting actions (e4 and e6).
Similarly, e8 is also a new event (not in 𝑀) on Activity 3 after
executing e5, thus e5 is also given a higher reward. Assume e1, e2
and e3 are all executed for many times after testing for a while, and
Activity 2, 3 and 4 are all covered (all events have been included in
the model𝑀). In this case, the Q-table is used to make decision on
the event selection: e1 is likely to be selected as it has the highest
rewards which means that it can reach deeper activities.

2.4 Fastbot2’s Implementation

Fastbot2 is implemented as a fully automated testing framework
for Android. It consists of the client and the server modules. The
client module reuses the GUI tree dumping and action execution
capabilities of Ape [6] to interact with the tested app. The server
module written in GoLang achieves event selection and supports
multi-device collaboration mode (which allows multiple clients to
test the same app in parallel on multiple devices and share the same
probabilistic model and the RL agent). The server exposes APIs to
accept GUI trees and return events to be executed for the clients.

3 EVALUATION

We evaluate the effectiveness of Fastbot2 by comparing it with
Stoat [11] and Ape [6], the two representative model-based test-
ing tools; and Monkey [5], the popular industrial testing tool. We
also tried to compare Fastbot2 with Q-testing [10], a recent rein-
forcement learning-based testing tool. However, Q-testing always
fails with exceptions after a few minutes of running when testing
our industrial apps. Thus, we do not compare with Q-testing. We
investigate the following research questions:
RQ1: Test Effectiveness: Is Fastbot2 able to achieve higher activ-

ity coverage and reveal more unique crashes than existing tools when

applied in the scenario of continuous app version updates?

We use two popular industrial apps, Douyin (a short video app)
and Toutiao (a daily news app), as our subjects and selected ten
recent consecutive versions of Douyin (v19.7∼v20.6) and Toutiao
(v8.7.0∼v8.7.9) for continuous testing. We ran Fastbot2 to test one
version on 10 devices in parallel for 1 hour, and then test the next
version by reusing the historical data from all the previous runs.
For the other tools, we ran them on each version on 10 devices in
parallel. Because this is the typical usage scenario of these tools.
We compare the achieved activity coverage and the number of
uncovered unique crashes by each evaluated tool.
RQ2: Ablation Study. Do the model-based and learning-based

event selection strategies both contribute to Fastbot2’s overall per-

formance?

We test Douyin (v.19.7) and Toutiao (v.8.7.0) on 10 devices for
1 hour with the model-based strategy enabled only, the learning-
based strategy enabled only, and both strategies enabled to evaluate
their respective impact on Fastbot2’s overall performance.

In RQ1 and RQ2, 10 different Huawei, OPPO and Google Pixel
Android devices are used to mitigate the device fragmentation issue.

3.1 RQ1: Test Effectiveness

Figure 3(a) and 3(b) shows the achieved activity coverage: (1) the
bars give the numbers of activities covered by different tools on each
app version, and (2) the curves give the accumulated numbers of
activities covered by different tools after testing the ten consecutive
app versions. Figure 3(c) and 3(d) gives the similar information in
terms of the number of unique crashes revealed by these tools (we
deduplicate crashes according to the crash stack traces [11]).

We can see that Fastbot2 achieved the highest activity coverage
on each single version of both apps (except Toutiao’s v8.7.3) and
the highest accumulated activity coverage across ten continuous
versions for both apps. It indicates that reusing the knowledge from
previous testing runs can effectively improve activity coverage within

the same time budget. On the other hand, We can see that Fastbot2
uncovered many more crashes on Douyin than all the other tools
(all the crashes were confirmed as real bugs). Fastbot2 uncovered 2
fewer crashes than Ape on Toutiao. We find that most crashes found
by these two tools on Toutiao are similar native crashes (i.e., crashes
triggered by the app but reside in native C++ libraries). The overall
result indicates that reusing the knowledge from previous testing runs

can also effectively improve Fastbot2’s bug finding ability.
Figure 4(a) and (b) use venn diagrams to compare the differences

between Fastbot2 and other tools in terms of the accumulated
activity coverage of Toutiao and Douyin after testing the ten app
versions, respectively. The overlapped part denotes the number

Fastbot2: Reusable Automated Model-based GUI Testing for Android Enhanced by Reinforcement Learning ASE 2022, 10 - 14 October, 2022, Michigan

0

50

100

150

200

v8
.7.

0
v8

.7.
1
v8

.7.
2
v8

.7.
3
v8

.7.
4
v8

.7.
5
v8

.7.
6
v8

.7.
7
v8

.7.
8
v8

.7.
9N

um
. o

f C
ov

er
ed

 A
ct

iv
iti

es

(a) Activity Coverage for Toutiao

0

50

100

150

200

250

v1
9.7

v1
9.8

v1
9.9

v2
0.0

v2
0.1

v2
0.2

v2
0.3

v2
0.4

v2
0.5

v2
0.6

N
um

. o
f C

ov
er

ed
 A

ct
iv

iti
es

(b) Activity Coverage for Douyin

0

5

10

v8
.7.

0
v8

.7.
1
v8

.7.
2
v8

.7.
3
v8

.7.
4
v8

.7.
5
v8

.7.
6
v8

.7.
7
v8

.7.
8
v8

.7.
9

N
um

. o
f R

ev
ea

le
d

C
ra

sh
es

(c) Uncovered Crashes of Toutiao

0

5

10

15

20

v1
9.7

v1
9.8

v1
9.9

v2
0.0

v2
0.1

v2
0.2

v2
0.3

v2
0.4

v2
0.5

v2
0.6

N
um

. o
f R

ev
ea

le
d

C
ra

sh
es

Fastbot
APE
Stoat
Monkey
Fastbot-Accum.
APE-Accum.

Stoat-Accum.
Monkey-Accum.

(d) Uncovered Crashes of Douyin
Figure 3: Testing results between Fastbot2 and other tools in terms of activity coverage and bug finding.

(a) Toutiao (b) Douyin
Figure 4: Differences of accumulative activity coverage.

(a) Toutiao (b) Douyin

Figure 5: Comparing Fastbot2’s internal strategies.

of activities covered by both tools, while other parts denote the
number of activities covered by the two tools alone, respectively.
We can see that Fastbot2 is indeed effective as it can cover many

more unique activities than other tools.
We note that Fastbot2 performed much better on Douyin than

Toutiao, compared to Ape. This is because Douyin is much more
complicated than Toutiao. For example, Douyin has more com-
plicated features, e.g., online shopping in the livestreaming room,
video recording and editing. In contrast, Toutiao has simpler fea-
tures (e.g., news reading). As a result, Toutiao is more likely to reach
saturated coverage within 1-hour testing by Fastbot2 and Ape.

We also note that Stoat did not perform well as we expected.
After inspection, we find Stoat only generated around 300 events
during 1-hour testing. The main reason is that Stoat kept querying
the GUI tree and only generated the next event until the current GUI
page became stable. However, many features of Douyin and Toutiao,
e.g., advertisements, profiles and user comments, are dynamically
changing, which makes Stoat waste a lot of time for waiting.

3.2 RQ2: Ablation Study

Figure 5(a) and (b) shows the activity coverage of Toutiao and
Douyin achieved by different testing strategies of Fastbot2 within
1-hour testing, respectively. Specifically, Fastbot2 (denoted by
“RL+PM”) achieves 31.5% coverage for Toutiao, which is higher than
both the model-based event selection strategy alone (28.5%, denoted
by “PM Only”) and the learning-based event selection strategy
alone (29.0%, denoted by “RL Only”). Similarly, Fastbot2 achieves
higher coverage for Douyin (20.8%) than the model-based strategy
alone (18.6%) and the learning-based strategy alone (19.2%). The
result indicates that both the model-based and learning-based event
selection strategies contribute to Fastbot2’s overall performance
in improving activity coverage.

4 INDUSTRIAL DEPLOYMENT

To date, Fastbot2 have been deployed in the Continuous Integra-
tion (CI) pipeline at ByteDance for nearly two years. Fastbot2 is
automatically triggered by nightly builds to obtain quick feedback
on app quality when new code changes occur. We have received
positive feedback from the internal app development teams. For
example, among all the developer-fixed crash bugs from Toutiao
(which were found during the dual-month in-house testing from
September 1 to October 31, 2021), 50.8% of these bugs were uncov-
ered by Fastbot2. Additionally, Fastbot2 can cover 80% of the
hot-spot activities in Toutiao that are frequently visited by online
users. These results corroborate Fastbot2’s strong effectiveness.

5 RELATEDWORK

We focus on discussing applying automated GUI testing for Android
in the industrial setting. Facebook’s Sapienz [1, 8] adopts search-
based testing to improve code coverage and fault detection. Later,
the team investigates extracting the information from crowd-based
testing to enhance Sapienz [9]. WeChat’s WCTester [14, 15] adopts
Monkey-based random testing. The tool allows human testers to
specify the blacklisted widgets and define GUI event sequences to
improve coverage. However, our work is significantly different from
this prior work. First, Fastbot2 mainly adopts model-based test-
ing (enhanced by a learning-based algorithm). Second, Fastbot2
reuses the knowledge from the historical exploration data to re-
solve the practical needs of continuous testing, which have not
been considered by prior work.

6 CONCLUSION

This paper presents a reusable automated model-based GUI testing
technique for Android enhanced by reinforcement learning to sat-
isfy the practical needs of continuous testing. Our implementation
Fastbot2 outperforms the three state-of-the-art testing tools in
both activity coverage and bug finding in the scenario of contin-
uous testing on two popular apps Douyin and Toutiao. Fastbot2
has been successfully deployed in the CI pipeline at ByteDance and
received positive feedback on its ability of improving app quality.

REFERENCES

[1] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying search based software engineering
with Sapienz at Facebook. In SSBSE. Springer, 3–45.

[2] AppBrain. 2022. . Retrieved June 3, 2022 from https://www.appbrain.com/stats/
number-of-android-apps

[3] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated test input generation for android: Are we there yet?. In ASE. IEEE,
429–440.

[4] Kristopher De Asis, J Hernandez-Garcia, G Holland, and Richard Sutton. 2018.
Multi-step reinforcement learning: A unifying algorithm. In AAAI, Vol. 32.

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps

ASE 2022, 10 - 14 October, 2022, Michigan Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang

[5] Google. 2021. UI/Application Exerciser Monkey. Retrieved March 3, 2021 from
https://developer.android.com/studio/test/monkey

[6] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In ICSE. IEEE, 269–280.

[7] Localytics. 2019. . Retrieved March 3, 2021 from https://uplandsoftware.com/
localytics/resources/blog/25-of-users-abandon-apps-after-one-use/

[8] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In ISSTA. 94–105.

[9] KeMao, Mark Harman, and Yue Jia. 2017. Crowd intelligence enhances automated
mobile testing. In ASE. IEEE, 16–26.

[10] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In ISSTA. 153–164.

[11] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In ESEC/FSE. 245–256.

[12] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking Automated GUI
Testing for Android against Real-World Bugs. In ESEC/FSE. to appear.

[13] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of android test generation tools in
industrial cases. In ASE. IEEE, 738–748.

[14] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated test input generation for android: Are we
really there yet in an industrial case?. In ESEC/FSE. 987–992.

[15] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated test input generation
for android: Towards getting there in an industrial case. In ICSE-SEIP. IEEE,
253–262.

https://developer.android.com/studio/test/monkey
https://uplandsoftware.com/localytics/resources/blog/25-of-users-abandon-apps-after-one-use/
https://uplandsoftware.com/localytics/resources/blog/25-of-users-abandon-apps-after-one-use/

	Abstract
	1 Introduction
	2 Fastbot2
	2.1 An Illustrative Example
	2.2 Probabilistic Model and Hyper-events
	2.3 Model-based Guided UI Exploration
	2.4 Fastbot2's Implementation

	3 Evaluation
	3.1 RQ1: Test Effectiveness
	3.2 RQ2: Ablation Study

	4 Industrial Deployment
	5 Related Work
	6 Conclusion
	References

