

Edinburgh Research Explorer

SIF: A Framework for Solidity Contract Instrumentation and
Analysis

Citation for published version:
Peng, C, Akca, S & Rajan, A 2020, SIF: A Framework for Solidity Contract Instrumentation and Analysis. in
2019 26th Asia-Pacific Software Engineering Conference (APSEC). Institute of Electrical and Electronics
Engineers (IEEE), pp. 466-473, The 26th Asia-Pacific Software Engineering Conference, Putrajaya,
Malaysia, 2/12/19. https://doi.org/10.1109/APSEC48747.2019.00069

Digital Object Identifier (DOI):
10.1109/APSEC48747.2019.00069

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 26th Asia-Pacific Software Engineering Conference (APSEC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. Jun. 2020

https://www.research.ed.ac.uk/portal/en/persons/ajitha-rajan(607874d7-5cb4-46f1-80a4-36976a668076).html
https://www.research.ed.ac.uk/portal/en/publications/sif-a-framework-for-solidity-contract-instrumentation-and-analysis(43216d4e-f9a2-4cca-822a-691fd07dc927).html
https://doi.org/10.1109/APSEC48747.2019.00069
https://doi.org/10.1109/APSEC48747.2019.00069
https://www.research.ed.ac.uk/portal/en/publications/sif-a-framework-for-solidity-contract-instrumentation-and-analysis(43216d4e-f9a2-4cca-822a-691fd07dc927).html

SIF: A Framework for Solidity Contract
Instrumentation and Analysis

Chao Peng
University of Edinburgh

Edinburgh, United Kingdom
chao.peng@ed.ac.uk

Sefa Akca
University of Edinburgh

Edinburgh, United Kingdom
s.akca@sms.ed.ac.uk

Ajitha Rajan
University of Edinburgh

Edinburgh, United Kingdom
arajan@ed.ac.uk

Abstract—Solidity is an object-oriented and high-level lan-
guage for writing smart contracts that are used to execute, verify
and enforce credible transactions on permissionless blockchains.
In the last few years, analysis of smart contracts has raised
considerable interest and numerous techniques have been pro-
posed to check the presence of vulnerabilities in them. Current
techniques lack traceability in source code and have widely
differing work flows. There is no single unifying framework for
analysis, instrumentation, optimisation and code generation of
Solidity contracts.

In this paper, we present SIF, a comprehensive framework
for Solidity contract analysis, query, instrumentation, and code
generation. SIF provides support for Solidity contract developers
and testers to build source level techniques for analysis, un-
derstanding, diagnostics, optimisations and code generation. We
show feasibility and applicability of the framework by building
practical tools on top of it and running them on 1838 real smart
contracts deployed on the Ethereum network.

Index Terms—high level languages, software testing, code
instrumentation, program analysis

I. INTRODUCTION

Blockchains are the underlying technology for making on-
line secure transactions using cryptocurrencies such as Bit-
coins and Ethers. Executing, verifying and enforcing credible
transactions on blockchains is done using smart contracts,
which is code written by the buyer and seller using Turing-
complete languages [1]. Solidity is a popular object-oriented
and high-level language for writing smart contracts [2], [3] and
can be compiled to bytecode for execution on the blockchain
network. With the increased use of smart contracts across
application domains, there is a crucial need for a unified
framework that supports and facilitates Solidity code analysis,
understanding, transformation, and development of tools for
verification and testing that provide strong security guarantees.

A. Problem

Traditional programming languages are generally supported
by a comprehensive framework for code instrumentation,
monitoring, optimisation and code generation such as LLVM/-
Clang [4] for C/C++. This framework support is lacking for
smart contract programming languages like Solidity. Existing
work and tools for Solidity contracts is primarily based on
analysing the bytecode of smart contracts for security vulnera-
bilities, or translating Solidity code to other languages or inter-
mediate forms over which security analysis is performed [3],
[5]–[10]. For instance, Oyente [5] analyses bytecode from

the Solidity compiler and successfully reports the presence
of vulnerabilities. However, it lacks the ability to trace and
localise bugs in Solidity code. Zeus [10] translates smart con-
tracts to LLVM bitcode but does not support complete Solidity
syntax, including throw statements, self-destructs,
virtual functions and assembly code blocks. These techniques,
although effective in detecting security vulnerabilities, are
not general purpose code instrumentation and analysis tools.
As a result, building program analysis tools with a purpose
different from detecting security vulnerabilities is difficult
using existing techniques. Traceability back to Solidity source
code is also a common issue in these techniques. We propose
a general purpose instrumentation and analysis framework that
addresses this need for Solidity contracts.

B. Goal

We seek to provide Solidity developers and testers with a
framework, similar to the widely-used C/C++ instrumentation
technique Clang LibTooling [11], to easily and effectively
understand, manipulate and analyse Solidity code. To achieve
this goal, we design and implement Solidity Instrumentation
Framework (SIF) with the following capabilities:

1) Provide an interface for users to query the Abstact Syntax
Tree (AST) of Solidity code.

2) Support code instrumentation or transformation using
pre-defined helper functions that can modify the AST.

3) Support Solidity code generation from AST.
Tools. We demonstrate the general purpose nature of the SIF
framework in supporting code instrumentation and analysis by
using it to implement 7 different tools or utilities for Solidity
contracts. Four of these tools query the Solidity abstract syntax
tree (AST) to provide information on the contract code and
three others instrument and modify the code using the AST.
A brief description of the tools is provided below,
Function Listing lists all the function definitions with func-

tion names, return lists, parameter lists and which contract
they belong to. Useful in summarising and reviewing
Solidity contracts.

Call Graph Generator produces function call graphs depict-
ing calling relationships between functions in a Solidity
contract. Nodes represent functions and edges represent
the calls relation. Useful in understanding and reviewing
smart contracts.

Control Flow Graph Generator produces a graphical rep-
resentation of control flow within a Solidity contract.
Control flow graphs are very useful in static analysis and
program optimisations.

AST Diff is a syntactic diff tool for comparing Solifity con-
tracts at the AST level. It ignores comments, white spaces
and blank lines.

SIF Rename allows the user to easily rename existing iden-
tifiers. All definitions and references to the specified
identifier will be changed to the new name provided.

Fault Seeder allows developer to artificially seed bugs in
smart contracts. The tool currently supports 3 common
bug/vunerability types. The seeded bugs can be used
to assess effectiveness of testing or verification tools in
uncovering vulnerabilties.

Assertion Analyser examines all AST nodes of the smart
contract and determines if the node is susceptible to
vulnerabilities, such as division by zero, overflow and un-
derflow. Assertions will be inserted by the tool at contract
locations susceptible to these vulnerabilties. Assertions
will be checked during execution of the modified contract.

We evaluate SIF and the 7 tools built on top of it on a
collection of 1838 real smart contracts that are running on the
Ethereum network. Our results show that SIF and the utility
tools are easy to use, highly automated and new tools can be
easily implemented with the helper functions.

II. RELATED WORK

Several static analysis and vulnerability detection tools for
smart contracts have emerged in the last few years. We present
and discuss existing work over Solidity contracts for vulnera-
bility detection, code generation, query and instrumentation.

a) Vulnerability detection: Many of the existing tech-
niques rely on bytecode analysis to check for potential vul-
nerabilities [3], [5]–[7]. Bytecode is the compiled hexadecimal
format of smart contracts. Solidity contract verification at the
bytecode level is sufficient to detect vulnerabilities, However,
it is challenging to trace the problem back to Solidity source
code, that the developer can then fix. Some techniques translate
Solidity code to the F* languages or represent code in an
intermediate form, such as LLVM IR (Intermediate Represen-
tation) or XML [8]–[10]. Vulnerability analysis is then done
over the intermediate representation. The techniques do not
support translation of the intermediate form back to Solidity,
which results in loss of traceability in source code.

b) Solidity code generation from AST/Intermediate form:
Currently, translation from intermediate form or AST back to
Solidity has limited support. We are only aware of one tool,
Soltar [12], that supports translation of Solidity AST back to
Solidity code. However, Soltar does not provide capabilities
supported by SIF to query and modify the AST. Additionally,
Soltar is not maintained and does not support Solidity versions
0.4.3 onwards. SIF, presented in Section III, is able to handle
the latest Solidity version 0.5.3, and older versions.

An existing tool, Zeus [10], supports translation of Solidity
code to LLVM bitcode but does not have the capability

to generate Solidity back from bitcode. Additionally, com-
plete Solidity syntax is not supported (throw statements,
self-destructs, virtual functions and assembly code
blocks) and there is no provision for code instrumentation.
Porosity [13] and an Ethereum smart contract decompiler,
JEB [14], translate bytecode back to Solidity code. However,
support for Solidity code query, modification and instrumen-
tation is not available in these tools.

c) Query and instrumentation of Solidity code: There
exists no general purpose framework or tool that provides
capabilities for users to query, modify and instrument Solidity
code. These capabilities are crucial for program understanding,
analysis, optimisation and verification techniques [15]–[18].
The SIF framework is novel in providing these capabilties and
in providing interfaces that allow users to easily define the
kind of query, modification and instrumentation needed. SIF’s
capabilities have allowed us to query and instrument Solidity
code to produce call graphs, control flow graphs, function
listing, Fault Seeder, Assertion Analyser along with scope
for building many custom utilities and diagnotics. We discuss
SIF’s design and the tools built on it in the next Section.

III. SIF OVERVIEW

In this section, we present our generic framework, SIF,
implemented in C++. SIF enables Solidity code query and
instrumentation and works at the AST level. The framework
also provides the capability for generating Solidity code back
from the AST. SIF supports the entire Solidity syntax, up to
version 0.5.3. The workflow of SIF is illustrated in Figure 1.
SIF starts from the AST of Solidity code, produced by the
Solidity compiler. It then accepts user instructions on queries
and/or modifications needed. The framework then gathers the
desired query information or performs modifications to the
AST and finally generates Solidity code from the AST.

In the rest of this Section, we describe the design SIF,
how it can be used for query and instrumentation along with
instructions needed from the user, a concrete illustration of the
query and instrumentation capabilities using seven tools that
we built on top of SIF. The framework with its source code and
user guide is available at https://github.com/chao-peng/SIF. To
allow users to try the framework without having to download
and build the source code, we have provided an online version
of SIF at https://wandbox.org/permlink/PnaL6bO9zipKRuKu.

A. SIF Design

Operations of SIF are dividied into 3 phases. Phase 1
focuses on representing AST nodes as C++ classes with
methods to retrieve and modify information of the node. Phase
2 interacts with user defined query and/or instrumentation
functions, and traverses the AST to perform the desired
operation. Phase 3 generates Solidity code from the AST. We
discuss each of these phases in more detail in the rest of this
Section. We use an example struct definition named
Request shown in Listing 1, containing a data element and
a method, to illustrate the different phases.

Listing 1: Struct example

Solidity CompilerSolidity Contract
Abstract
Syntax

Tree

Instrumented
Solidity Contract

☑

☑

☑
User-defined

Query /
Instrumentation

SIF

AST Query

AST Modification

Code Generation

Query
Information

from the AST

Info

</>

Fig. 1: SIF work flow

Struct

Root

Field 1 Field 2 Field N...

Fig. 2: An AST example highlighting a struct definition

1 struct Request {
2 bytes data;
3 function (bytes memory) external callback;
4 }

Phase 1: AST Representation. The Solidity compiler gener-
ates the AST from Solidity code in two formats: plain text and
JSON (JavaScript Object Notation, a structured data format).
In an attempt to make our tool for code instrumentation generic
and easy to use, we use C++ classes as our intermediate AST
representation. Given the Solidity AST, SIF first traverses the
AST and for each node, it instantiates a class of that node
type with all the associated information. Figure 2 shows a
struct definition appearing in an example AST. The classes
contain information about the AST node in their data fields,
and provide methods to query and modify the data. Listing 2
shows the C++ class representation of a struct definition node
in the AST. The C++ class provides methods for getting
name of the struct, setting it to a different name, querying
number of fields in the struct, getting a particular field, adding,
removing and updating a field. These methods facilitate query
and modification of the AST node.

Listing 2: Representing structs using a C++ class

1 class StructDefinitionNode : public ASTNode {
2 public:
3 StructDefinitionNode() : ASTNode(); // Constructor
4 string source_code(); // produce source code
5 string get_name(); // get the name
6 void set_name(new_name); // update the name
7 int num_field(); // get the number of fields
8 void add_field(new_field); // add a new field
9 void remove_field(index); // remove a field

10 void update_field(index, _new); // update a field
11 ASTNode get_field(index); // get a field by
12 private:
13 string name; // name of the struct
14 vector<ASTNode> fields; // list of struct fields
15 };

Phase 2: Query and Instrumentation. SIF interacts with users
for AST query and instrumentation through a function visit that

it declares. SIF traverses the AST starting from the root node
in a depth-first fashion using the visit function. The user can
implement queries and modifications, if any, that are needed
within the visit function. For example, the user can change
the name of the example struct Request from Listing 1 to
DirectRequest by implementing it in the visit function, as
shown in Listing 3. Each time SIF visits an AST node, the visit
function is called to process operations defined by the user. In
this example, the visit function first determines whether the
current node is a struct definition and then checks
whether the struct name matches Request. If there is a match,
the struct name is changed to DirectRequest. The methods,
get name() and set name(), used in this implementation are
helper methods provided by SIF to facilitate writing of AST
queries and instrumentations.

Listing 3: Change the name of a struct in SIF

1 void visit(ASTNode* node) {
2 if (node->get_node_type() == StructDefinition) {
3 StructDefinition* sd = (StructDefinition*) node;
4 if (sd.get_name() == "Request")
5 sd.set_name("DirectRequest");
6 }
7 }

Phase 3: Solidity code generation. For each type of AST node
classes, SIF defines code templates that allow corresponding
Solidity code to be generated. Listing 4 illustrates the code
template for the StructDefinitionNode. In the listing
below, the template generates Solidity code for a struct
definition by first printing the struct keyword, fol-
lowed by the name of the struct, a left brace indicating the
start of struct element definitions. The template then iterates
through the list of struct element definitions. Once an element
definition is visited, the source code of that definition is
appended to the struct source code. Once all the element
definitions are completed, a right closing brace is added,
indicating the end of the struct definition. If the name of the
struct were changed by the user, as shown in Listing 3, the
new struct name will appear in the generated Solidity code.

Listing 4: Source code template of structs

1 string StructDefinitionNode::source_code() {
2 string source = "struct " + name + "{\n";
3 Iterate the list of element definitions:
4 source += element.source_code() + ";\n";
5 return source + "}\n";
6 }

SIF Tools

SIF

Contract Query

Function Listing

AST Diff

CG Generator

CFG Generator

Contract
Instrumentation

Sif Rename

Assertion Analyser

Fault Seeder

List of Function
Definitions
Syntactic

Differences

Call Graph

Control Flow
Graph

Contract with
Modified Identifiers

Contract with
Assertion Statements

Contract with
Seeded Faults

List

List

Fig. 3: Using SIF to build tools

B. Using SIF

SIF provides an interface in the form of predefined functions
- before, visit and after, to perform user-defined AST queries
and instrumentations. We have presented in Section III-A how
the visit function can be used for this purpose. The before
function is called by SIF in advance of traversing the AST, and
can be used for data initialisation. The after function is called
when visiting the AST is completed and helps summarise
information gathered from the AST. In the following Section,
we demonstrate how these three functions can be used in
custom utility tools built with SIF.

C. Tools using SIF

To illustrate the framework’s extent of support for building
custom queries and instrumentations, we implemented seven
utility tools for Solidity contracts, as shown in Figure 3. The
seven tools were inspired by tools built over other mature
code instrumentation frameworks, such as Clang LibTooling
for C/C++. We discuss and present each of these tools in the
rest of this Section.

a) Function Listing: Given a Solidity file with multiple
contracts and function definitions, this tool outputs a list
of functions that appears in the file with function names,
parameter lists, return lists and the contracts in which they
are defined. It is worth noting that in Solidity, functions
are considered members of contracts and appear as children
of contract definition nodes in the AST representation. To
implement the Function Listing tool, we use the pre-
defined visit function within SIF. We check whether the visited
node is a contract definition node. For contract definition
nodes, we check all the children nodes to see if they are
of type function definition. If function definition nodes exist,
we record information on its name, parameters, and return
values using SIF’s helper methods for this node type. Once

SIF finishes traversing the AST, the recorded information on
functions definitions is printed. Listing 5 shows the list of
function definitions printed by this tool for the AztraToken
contract in Etherscan1.

Listing 5: Function definitions summerised by Function Listing

1 [In AztraToken] AztraToken() returns ()
2 [In AztraToken] _transfer(address _from, address _to

, uint _value) returns ()
3 [In AztraToken] transfer(address _to, uint256 _value

) returns ()
4 [In AztraToken] transferFrom(address _from, address

_to, uint256 _value) returns (bool success)
5 [In AztraToken] approve(address _spender, uint256

_value) returns (bool success)
6 [In AztraToken] burn(uint256 _value) returns (bool

success)
7 [In AztraToken] burnFrom(address _from, uint256

_value) returns (bool success)
8 [In AztraToken] mintToken(address target, uint256

mintedAmount) returns ()
9 [In AztraToken] freezeAccount(address target, bool

freeze) returns ()
10 [In AztraToken] transferOwnership(address newOwner)

returns ()

b) CG Generator: CG Generator illustrates the call-
ing relationships between functions as a call graph (CG). The
tool is implemented using the visit function first to process
two types of AST nodes: function definition and function call.
The tool maintains a map containing the callee function with
the caller functions it is associated with. After traversing the
full AST, the graph is drawn by the after function using a
graph drawing tool, Graphviz [19], with function names as
nodes and edges based on the relations recorded in the map.
Figure 4 presents the call graph generated by our tool for the
AztraToken contract.

c) CFG Generator: Control flow graphs (CFG) are used
to illustrate control flow within a program [16] and is fun-
damental to many static analysis and compiler optimisation
techniques. The tool CFG Generator produces control flow
graphs for functions or subroutines within Solidity contracts.
Figure 5 shows the CFG generated by our tool for the uint2str
function, shown in Listing 6, that converts an unsigned integer
variable to a string. The uint2str function is found in contract
Item from Etherscan2.

Listing 6: Function to generate a control flow graph using CFG Generator

1 function uint2str(uint i) internal pure returns (
string) {

2 if (i == 0) return "0";
3 uint j = i;
4 uint len;
5 while (j != 0){
6 len++;
7 j /= 10;
8 }
9 bytes memory bstr = new bytes(len);

10 uint k = len - 1;
11 while (i != 0){
12 bstr[k--] = byte(48 + i % 10);

1The contract AztraToken is available at https://etherscan.io/address/
0x6962E259a8f9633C4494764628A7984cCEd58e10

2The contract Item is available at https://etherscan.io/address/
0x5f896c654a08323dbe16aded331c461ccaeeb370

AztraToken

uint256 _transfer

Transfer assert require

burn

Burn

burnFrom

freezeAccount

FrozenFundsmintToken

transfer transferFrom

Fig. 4: Call Graph of the Smart Contract AztraToken

[0]
uint2str(uint i)

[1]
i == 0

[2]
return "0";

True

[3]
uint j = i;
uint len;

False

[4]
j != 0

[5]
len++;
j /= 10;

True

[6]
bytes bstr = new bytes(len);

uint k = len - 1;

False

[7]
i != 0

[8]
bstr[k--] = byte(uint8(48 + i % 10));

i /= 10;

True

[9]
return string(bstr);

False

Fig. 5: Control Flow Graph of the Function uint2str from the
Smart Contract Item

13 i /= 10;
14 }
15 return string(bstr);
16 }

CFG Generator traverses the AST and clusters nodes
in a straight line code sequence into basic blocks. When a
node introducing control flow is encountered, the most recent
basic block ends and is linked to the condition node with the
control flow. The true branch of this control flow is linked to
the first basic block of the then branch for an if statement or
the loop body if it is a loop. The false branch is linked to
the first basic block of the else branch for an if statement or
the first basic block immediately after the loop body if it is
a loop. Basic blocks and links between them are maintained
and recorded in a data structure as the AST is traversed. Once
the AST traversal is completed, the visit function passes the
data structure to Graphviz [19] to generate a graph depicting
basic blocks and control flow. The data structure and resulting

CFG is shown in the Listing 7 and Figure 5, respectively.

Listing 7: Data structure produced by CFG Generator

1 Node [0] -> Node [1];
2 Node [1] -> Node [2] label=True Branch;
3 Node [1] -> Node [3] label=False Branch;
4 Node [2] -> Node [3];
5 Node [3] -> Node [4];
6 Node [4] -> Node [5] label=True Branch;
7 Node [4] -> Node [6] label=False Branch;
8 Node [5] -> Node [4];
9 Node [6] -> Node [7];

10 Node [7] -> Node [8] label=True Branch;
11 Node [7] -> Node [9] label=False Branch;
12 Node [8] -> Node [7];

d) AST Diff: AST Diff takes two Solidity contracts
and compares them at the AST level to report syntactic differ-
ences. The tool ignores differences in comments, white spaces,
and empty lines. Implementation using the visit function starts
from the root node of one smart contract. Every node visited
within this smart contract is compared with nodes in the
other contract. Differences in data fields within the node are
reported. Extra or missing nodes are also shown.

e) SIF Rename: This tool allows users to change the
names of functions, variables and contracts by locating and
replacing all occurences. The tool accepts three additional
inputs: identifier type, old name and new name. The before
function first parses the command line options for these
additional inputs. As SIF traverses the AST, the visit function
checks if the currently visited node matches the type and name
of the identifier provided by the user. If a match is found, the
old name gets replaced with the new one. The replacement is
also performed within other nodes that reference the provided
identifier. For instance, if a user wants to rename a particular
contract, SIF Rename will rename the contract within the
contract definition AST node. It will also rename
references to the contract within other nodes such as member
access and using for directive that may reference
the given contract.

Fault Seeder and Assertion Analyser These tools focus on
3 types of security vulnerabilities commonly found in smart
contracts, presented in Table I. Fault seeder instruments the
code by injecting vulnerabilities. Assertion Analyser uses AST
query and instrumentation capabilities to insert assertions in
the contract.

f) Fault Seeder: For each type of vulnerability illustrated
in Table I, the Fault Seeder tool creates a new code block
containing that vulnerability and injects it into the Solidity

Type of Vulnerability Assertions Added by Assertion Analyser Fault seeded by Fault Seeder
Division by Zero require(c != 0); a = b / c; Statement with division by zero is inserted.

Unsigned Overflow a = b + c; assert(a >= b && a >= c); Arithmetic operation resulting in
overflow is inserted.a = b * c;

(b != 0 && c != 0)? assert(a >=b && a >= c): assert(a == 0);

Unsigned Underflow a = b - c; assert(b >= a && b >= c); Arithmetic operation resulting in
underflow is inserted.

Signed Overflow /
Underflow

a = b + c;
assert((c >= 0 && a >= b) || (c < 0 && a < b)); Arithmetic operation resulting in

overflow / underflow is inserted.a = b - c;
assert((c >= 0 && a <= b) || (c < 0 && a > b));

a = b * c;
(b != 0 && c != 0)? assert((a / b == c) && (a / c == b)): assert(a == 0);

TABLE I: Vulnerability types

contract. SIF traverses the contract AST and inserts an extra
AST node containing a single vulnerability into the original
AST. Solidity code is then generated from the modified AST,
and is referred to as a mutated contract. For example, to
introduce integer underflow, Fault Seeder inserts the code
snippet shown in Listing 8 into the original smart contract.

Listing 8: Code snippet to introduce underflow by Fault Seeder

1 uint256 minuend = 20;
2 uint256 subtrahend = 250;
3 uint256 result = minuend - subtrahend;

g) Assertion Analyser: Inserting property checks using
assert statements is helpful in verifying program correctness.
The Assertion Analyser tool inserts pre- and post-
conditions for arithmetic operations to help detect overflow,
underflow and division by zero vulnerabilities. Within the
visit function, the Assertion Analyser tool first gathers
information on the node, and operators and operands if any
within. For example, an expression node with arithmetic
operations may be prone to an overflow/underflow error. The
tool then inserts relevant assert statements, shown in Table I,
as extra nodes following the node under analysis. For division
by zero vulnerability, SIF inserts a pre condition, before the
node under analysis with a division operator, that asserts the
divisor expression is greater than zero. Consider the function
uint2str, shown in Listing 6, with a subtraction operation on
line 10. The Assertion Analyser tool will insert an
assert statement, shown in Listing 9, to check for unsigned
integer underflow.

Listing 9: Inserted guard for a subtraction operation by Assertion Analyser

1 uint k = len - 1;
2 assert(len >= k && len >= 1);

IV. EVALUATION

We evaluate feasibility, ease of use and extent of automation
in using SIF and the seven tools built on it over 1838 unique
Solidity contracts from the Ethereum network 3.

Additionally, after SIF was released on Github in May 2019,
we received various enquiries about using the framework from
different parts of the globe. The interest expressed in the
framework was encouraging. The feedback helped us fix bugs
and improve the usability of the framework and is discussed
in Section IV-C.

3Our dataset is available at https://github.com/chao-peng/SIF

A. Research Questions

We investigate the following questions in our experiment:

Q1. Solidity Language Support: Does SIF support all con-
structs in the Solidity syntax and generate code ac-
cordingly? To answer this question, we first inspect
contract code in our dataset and the official Solidity
documentation to check the range of syntactic structures
present in the dataset. We then use SIF, without any in-
strumentations, to generate Solidity contracts from ASTs
and we compare if the generated code is the same as the
original.

Q2. Correctness of AST Query and Instrumentation:
Are the tools built on top of SIF able to query and
instrument the AST and produce correct output? We use
a small user group to help answer this question. The user
group comprised of ourselves (User-0), 2 PhD students
familiar with Solidity language (User-1 and User-2),
and a second year undergraduate student (User-3) with
basic knowledge of Solidity. We manually check the
correctness of the query and instrumentation information
over the different contracts.

Q3. Feasibility, Extent of Automation and Ease of Use:
How feasible is the framework for users to write their
own tools? Are the tools fully automated and easy to
use? We asked User-1, User-2 and User-3 to
evaluate the framework and the 7 tools on the following
aspects:

1) Ease of implementing new tools On a scale of 1 (very
hard) to 5 (very easy), rate how easy it is to implement
new tools using SIF. We asked the users to write a new
tool, Loop Count, to report the number of loops in a
Solidity contract, that utilises the AST query capability
of the framework. We also asked the users to create a
tool, Make Signed, that changes all unsigned integer
(uint) types to signed integer (int), utilising both query
and instrumentation capabilities.

2) Extent of automation of the 7 tools On a scale
of 1 (Completely manual) to 5 (fully automated),
rate the extent to which the seven tools can be run
automatically.

3) Ease of use of the 7 tools On the scale of 1 (Very
difficult to use) to 5 (Very easy to use), rate the ease
with which the 7 tools can be used.

B. Experimental Result
We discuss the experimental results in the context of the

experiment questions presented earlier in this Section.
1) Solidity language support: The 1838 Solidity contracts

in our dataset contain a wide variety of Solidity constructs.
We manually checked against the Solidity documentation as
well as the source code of the official Solidity compiler,
and confirmed that our dataset covers all syntactic elements
in Solidity. Our technique was able to analyse the AST
and generate source code for all 1838 smart contracts from
their ASTs automatically. The generated contracts were also
compared by the 3 users to the original contracts, and no
differences were reported. As mentioned in Section II, the
F* tool [8] does not support loop structures in Solidity. A
significant fraction of contracts in our dataset contain loops
and SIF is able to fully support loops. Self-destructs, throw
statements and inline-assembly blocks are not supported by
the Zues verification tool [10]. Our framework fully supports
the use of these constructs in Solidity contracts.

2) Correctness of AST query and instrumentation: The
seven tools discussed in Section III-C utilise SIF capabilities
for AST query and instrumentation. We evaluate correctness
of these capabilities in the context of the seven tools.

To validate output of tools Function Listing and CG
Generator, we split the dataset into two halves. With
contracts in the first half of the dataset, two users ran the tools
to collect function lists and call graphs. The other two users
validated the output produced by the tools by inspecting the
original contract. We, then, swapped the roles of the users for
contracts in the second half. This was done to reduce biases,
if any, and the monotony in checking the contracts. The users
did not find any anomalies in the tools over the given dataset.

Control flow graphs produced by CFG Generator were
manually inspected by User-0 to check its correctness. CFG
generator correctly generated CFGs for all contracts in the
dataset. To evaluate AST Diff, we split the dataset into two
halves again. User-0 and User-3 modified contracts in
the first half by renaming identifiers, mutating operators and
deleting code blocks for the first half. User-1 and User-2
ran the AST Diff on each set of original and modified
contract (from first half), to check if all the modifications were
reported correctly by the tool. The user roles were swapped
for contracts in the second half of the dataset. AST Diff was
found to work correctly by all users over all the contracts.

For the instrumentation capability, we used SIF Rename
to locate and change names of identifiers within contracts in
the dataset. We again, split the user reponsibilities so that
two users selected and changed identifier names and two
users checked the changes were reflected in the generated
Solidity code. Different identifier types were selected. The
users found SIF Rename worked correctly for the given dataset
and requested changes.

Each of the four users ran Fault Seeder, selecting
different vulnerability types to be seeded in each Solidity
contract, and inspected the mutated contracts to check if
the vulnerabilities were seeded as per choice. The mutated
contracts were also run using the Solidity compiler, solc,

to check for syntactic correctness. No issues were reported.
The Assertion Analyser tool was run on all contracts,
and the users individually inspected if the assertions were
inserted correctly for the arithmetic operations. The instru-
mented contracts with assertions were checked through the
solc compiler for syntactic correctness; no problems were
found. The users were able to confirm the assertions were
inserted by the tool correctly around arithmetic operations in
all contracts.

User #
Existing 7 Tools Using SIF

Extent of
Automation

Ease of
Use

Ease of Implementing New Tools
Loop Count Make Signed

1 4 4 4 4
2 5 4 5 4
3 4 5 4 3

Avg. 4.3 4.3 4.3 3.7

TABLE II: User experience of using SIF and tools

3) Extent of automation and ease of use: Table II reports
how User-1, User-2, and User-3 rate the existing 7 tools
for ease of use and extent of automation. The table also shows
how the users rate feasibility and ease with which new tools,
Loop Count and Make Signed, can be implemented us-
ing SIF. As the user interface for the existing 7 tools is similar,
we report the average ratings across the 7 tools for ease of use
and extent of automation for each user. User-1, User-2,
User-3 rate the extent of automation for the 7 tools as 4, 5
and 4, respectively, giving a high average user experience of
4.3 (mostly fully automated). This implies that the users agree
that the tools have a high level of automation with little user
intervention. The users gave a score less than 5 as the users
had to use the Solidity compiler to first produce the AST and
then call the tool. We will look to automate this step in the
future so the users do not have to explicitly call the Solidity
compiler.

For ease of use of the 7 tools, all three users felt the interface
for running the tools was easy to understand and use (ratings
of 4, 4 and 5).

For writing new tools with SIF, all three users felt it was
easy to implement the Loop Count tool (average imple-
mentation ease being 4.3) owing to implementation similarity
to the existing Function Listing tool (replace functions
by loops). The users found implementing the Make Signed
tool was slightly more challenging, as it is different from im-
plementations of the existing 7 tools. Implementing the Make
Signed tool requires searching through variable declarations,
function parameter lists to locate all unsigned integer qualifiers
and replacing them with the signed qualifier. User-3 found
implementation of the visit function was only slightly easy
(rating of 3), while User-1 and User-2 found it easy (rating
of 4). User-3 is not proficient in C++, and found the use
of pointers in the visit function interface tricky. To address
this issue, we have added comments in the interface showing
how to use and cast to AST node pointers. Average ease
of implementation across the users was 3.7 for the Make
Signed tool.

Finally, we report the time taken in using the framework to
generate Solidity code from unmodified ASTs. For contracts

with less than 1000 lines of code (90.0% of the dataset), the
framework finished code generation in 4 seconds. One of the
bigger contracts, Expiry4 with 6183 lines of code, takes 85.6
seconds for code generation from AST. To understand why
code generation for this contract took significantly longer, we
profiled the framework phases and found that 40.3 seconds was
spent on parsing the JSON format AST. Our framework uses
the text format AST as the main reference and only queries
the JSON format AST when it encounters keywords missing in
the text AST. However, each such query starts from the root
of the JSON AST for each newly visited node, resulting in
significant overhead. Other contracts with more than 5K lines
of code finished code generation in less than 15 seconds as
they did not have to refer to the JSON AST very frequently.
In our future work, we will optimise and accelerate queries
involving JSON data structures.

C. Feedback from the Global Community
In the 2 months since SIF was realeased on GitHub, we

noted interest in its use and received queries from users around
the world. In this Section, we present feedback and suggestions
from global users.

a) Bug report related to unitinitialised variables: This
was reported by a user from Ohio State University. We found
the bug was caused by un-initialised smart contract variable
definitions. The framework looks for the missing initialisation
statement in such variable definitions. We have now fixed this
bug.

b) Enquiry on gathering information from the AST:
2 users from China did not know how to maintain and
summarise information gathered from different AST nodes.
We provided them with guidance and examples of using before
and after functions to address this issue. We also updated our
documentation to include this.

c) Request for more Command Line options: A user
from Hong Kong University of Science and Technology made
this request. After each SIF run, smart contract source code
is generated by default. However, code generation is not
always desired, especially for users who only want to query
information from the AST. We have now provided this option
to avoid code generation. We plan to add more command line
options to SIF for additional user control.

d) Request for detailed documentation: A user from
ShanghaiTech University requested more detailed documen-
tation on each type of AST node and the associated fields and
methods. We have provided this documentation for all types
of AST nodes, along with examples using them.

V. CONCLUSION

SIF provides the capability to query, analyse and instrument
the AST of Solidity contracts and generate Solidity code back.
The framework uses a C++ intermediate representation, and
provides helper methods to gather information on different
AST nodes and manipulate them, as needed. The framework
is generic and eases the implementation of custom query and

4The contract Expiry is available at https://etherscan.io/address/
0x0ece224fbc24d40b446c6a94a142dc41fae76f2d

instrumentation capabilties. Users interact with the framework
using a simple interface that is easy to understand and use.
We built 7 tools for different types of Solidity code query
and instrumentation to evaluate SIF’s versatality and asked 3
users to rate the usability and automation of the tools along
with ease of implementing new tools. We used 1838 unique
contracts in our evaluation.

We found SIF was able to run all 1838 contracts, and the
outputs of all 7 tools were confirmed to be correct by all the
users. Additionally, the users found the 7 tools were ease to
use and nearly fully automatic. The users also implemented 2
new tools using SIF and found the framework was well suited
for implementing new tools, owing to the helper functions
and simple interface. SIF’s generality and ease of use makes
it a promising framework for Solidity developers and testers
to quickly and easily build, maintain new tools or leverage
existing capabilities. Since the release of the framework on
GitHub, we have received interest in its use for Solidity code
analysis and instrumentation from several international users.
We envision SIF becoming a large tooling infrastructure like
LLVM/Clang, supporting diagnostics, easy development and
maintenance of Solidity tools.

REFERENCES

[1] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[2] C. Dannen, Introducing Ethereum and Solidity. Springer, 2017.
[3] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and

M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 67–82, ACM, 2018.

[4] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” (San Jose, CA, USA), pp. 75–88,
Mar 2004.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 254–269, ACM, 2016.

[6] MythX, “Mythril classic: Security analysis tool for ethereum smart
contracts,” 2019.

[7] Remix, “Remix documentation,” 2018.
[8] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,

G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, pp. 91–96, ACM, 2016.

[9] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” 2018.

[10] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” NDSS, 2018.

[11] “Clang libtooling,” 2019. https://clang.llvm.org/docs/LibTooling.html.
[12] “Soltar,” 2016. https://github.com/duaraghav8/soltar.
[13] “Porosity,” 2017. https://github.com/comaeio/porosity.
[14] P. Software, “Ethereum smart contract decompiler,” 2019.
[15] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans-

actions on Software Engineering, no. 3, pp. 216–226, 1979.
[16] F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,

pp. 1–19, ACM, 1970.
[17] M. Geimer, S. S. Shende, A. D. Malony, and F. Wolf, “A generic and

configurable source-code instrumentation component,” in International
Conference on Computational Science, pp. 696–705, Springer, 2009.

[18] M. M. Tikir and J. K. Hollingsworth, “Efficient instrumentation for
code coverage testing,” in ACM SIGSOFT Software Engineering Notes,
vol. 27, pp. 86–96, ACM, 2002.

[19] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphvizopen source graph drawing tools,” in International Symposium
on Graph Drawing, pp. 483–484, Springer, 2001.

