
CLTestCheck: Measuring Test Effectiveness for GPU Kernels 

Chao Peng, Ajitha Rajan
School of Informatics, University of Edinburgh, UK

Ø Definition of three OpenCL code coverage metrics inspired by real faults.

Ø Automate measuring code coverage achieved by test suites.

Ø Automate measuring fault finding capability of test suites.

Ø Work-group schedule amplifier to check for potential deadlocks and data races with
a given test suite that may be caused by inter work-group dependencies.

Contributions

Ø Writing correct GPU programs is challenging due to the huge number of threads
clustered into work-groups and the three-level memory hierarchy.

Ø Existing work focuses on program verification by static and dynamic code analysis.

Ø There exist no means of measuring effectiveness of tests developed for GPU kernels.

Chao Peng
chao.peng@ed.ac.uk

chao-peng.github.io

Ajitha Rajan
arajan@ed.ac.uk

homepages.inf.ed.ac.uk/arajan/

Motivation

Our Approach
Code Coverage Measurement

Coverage criteria: Branch Coverage, Loop Boundary Coverage, Barrier Coverage
The framework automatically instruments the GPU program and code coverage is
recorded by the inserted data structure and code blocks.

Fault Seeding

The framework generates
mutations using:
• Operator mutants:

mutating arithmetic,
relational, bitwise,
logical and assignment
operators;

• Barrier mutants:
deleting barrier
function call;

• Image coordinate
mutants: changing
coordinates of image
accesses;

• Loop boundary
mutants: changing the
boundary value in loop
conditions.

Schedule Amplification

• We implemented the first OpenCL Schedule Amplifier to generate different work-group schedules. 
• In each schedule, one work-group is selected to execute first and when it finishes execution,

other work-groups are enabled to proceed.
• The selected work-group ID is uniformly distributed in the space of work-groups.

4 industry standard OpenCL
benchmark suites:

• Parboil
• Rodinia
• Scan
• PolyBench

Totaling 82 OpenCL kernels.

Case Studies
Ø CLTestCheck is able to automatically measure coverage achieved by test inputs and reveal uncovered

code blocks that may need further verification.

Ø CLTestCheck is able to automatically generate different types of mutations. Fault finding and total
coverage were highly correlated for these benchmarks.

Ø Schedule amplification revealed data races in two subject programs.

Results


